Climate-Induced Agricultural Vulnerability Mapping for India Using Machine Learning

Internship at Indian Institute of Technology, Bombay

A Project Report

Submitted by Aryaman Srivastava 200280113001

In partial fulfillment for the award of the degree of Bachelor of Engineering

in Environmental Engineering Department L.D. College of Engineering, Ahmedabad

Gujarat Technological University, Ahmedabad January 2024

GUJARAT TECHNOLOGICAL UNIVERSITY

CERTIFICATE FOR COMPLETION OF ALL ACTIVITIES AT ONLINE PROJECT PORTAL B.E. SEMESTER VIII, ACADEMIC YEAR 2023-2024

Date of certificate generation : 09 May 2024 (13:49:09)

This is to certify that, *Aryaman Srivastava* (Enrolment Number - 200280113001) working on project entitled with *Climate-Induced Agricultural Vulnerability Mapping for India Using Machine Learning* from *Environmental Engineering* department of *L. D. COLLEGE OF ENGINEERING, AHMEDABAD* had submitted following details at online project portal.

Internship Projec	et Report		Completed				
Name of Student :	Aryaman Srivastava	Name of Guide	: Mrs.KUHIKAR AMRUTA SHAILENDRA				
Signature of Student :		*Signature of G	uide :				
Visclaimer : This is a computer generated copy and does not indicate that your data has been evaluated. This is the receipt that GTU as received a copy of the data that you have uploaded and submitted as your project work.							

*Guide has to sign the certificate, Only if all above activities has been Completed.

Environmental Science & Engineering

Subhankar Karmakar, Ph.D. Professor & Head Environmental Science and Engineering Department (ESED); Vinaya & Samir Kapoor Chair in Climate Studies, Interdisciplinary Program in Climate Studies; Associate faculty, Centre for Urban Science and Engineering; Indian Institute of Technology Bombay, Mumbai 400 076, INDIA. Email: skarmakar@iitb.ac.in, Tel: +91 22 2576 7857 **IIT Bombay**

10 May 2024

To whom it may concern

Sub: Certificate for Mr. Aryaman Srivastava

Greetings from IIT Bombay!

This letter serves as confirmation that Mr. Aryaman Srivastava has been engaged in an **IRCC-IIT Bombay internship project** titled "*Climate-induced Agricultural Vulnerability Mapping for India using Machine Learning*" under my supervision at ESED, IIT Bombay. His tenure commenced on 15 January, 2024, and is scheduled to continue until the conclusion of his internship, tentatively set for 30 June, 2024.

Throughout his involvement, Mr. Aryaman Srivastava has demonstrated a commendable level of dedication and enthusiasm towards his responsibilities. I am confident that he will continue to excel in his academic pursuits and wish him the very best for his future endeavors.

Thank you. With best regards,

Sollowborn Karmahm

Subhankar Karmakar Professor & Head, ESED

যুপাকং কৰ্মকাং /Subhankar Karmakar Professor & Head Environmental Science & Engg. Dept: (ESED) ITT Bombay, Powai, Mumbal - 400076. Maharashtra, India.

L.D. College of Engineering Ahmedabad

CERTIFICATE

This is to certify that the project report submitted along with the project entitled **Climate-Induced Agricultural Vulnerability Mapping for India Using Machine Learning** has been carried out by **Aryaman Srivastava** under my guidance in partial fulfillment for the degree of Bachelor of Engineering in Environmental Engineering, 8th Semester of Gujarat Technological University, Ahmedabad during the academic year 2023-24.

Prof. Amruta Kuhikar Internal Guide

Prof. Gaurang Ban Head of the Department

L.D. College of Engineering Ahmedabad

DECLARATION

We hereby declare that the Internship report submitted along with the Project entitled **Climate-Induced Agricultural Vulnerability Mapping for India Using Machine Learning** submitted in partial fulfillment for the degree of Bachelor of Engineering in Environment Engineering to Gujarat Technological University, Ahmedabad is a bonafide record of original project work carried out by me at **Indian Institute of Technology, Bombay** under the supervision of **Prof. Subhankar Karmakar** and that no part of this report has been directly copied from any student's reports or taken from any other source, without providing due reference.

Name of the Student Aryaman Srivastava Sign of Student

Acknowledgement

I would like to express my heartfelt gratitude and appreciation to all the individuals who have played an instrumental role in making my internship journey an enriching and transformative experience.

I am deeply indebted to my PI, **Prof. Subhankar Karmakar** at the **Indian Institute of Technology, Bombay** who generously shared his time, knowledge, and expertise throughout my internship. His guidance, support, and patience have been invaluable in shaping my professional growth and helping me gain practical insights into the industry. I am immensely grateful for his mentorship, encouragement, and unwavering belief in my abilities.

I would also like to express my gratitude to the faculty members of the Environmental Engineering Department, L.D. College of Engineering, for their constant support and guidance throughout my academic journey. Their wealth of knowledge, passion for teaching, and commitment to excellence have been instrumental in shaping my overall educational experience. I am grateful for their willingness to go the extra mile to ensure that I receive a comprehensive education and acquire the necessary skills for my chosen field.

Yours Sincerely,

Aryaman Srivastava

Abstract

Internship carried out at Indian Institute of Technology, Bombay under the IRCC IIT Bombay Research Internship Awards 2023 - 24 on the topic "Climate-Induced Agricultural Vulnerability Mapping for India Using Machine Learning". Rising temperatures and altered precipitation patterns threaten crop production and food security, posing a severe danger to India's agricultural economy. Using machine learning techniques to map India's agricultural vulnerability to climate change is an innovative solution to this problem. Agricultural vulnerability to climate change is a complicated, multifaceted topic that necessitates a comprehensive analysis of the effects of socioeconomic and biophysical elements. Prioritizing adaptation and mitigation measures requires identifying the regions most at risk. Using a combined indicator approach and machine learning, the proposed project will develop a methodology for mapping India's agricultural vulnerability to climate change. The study will use the IPCC AR5-AR6 framework and consider the sensitivity and adaptive indicators to derive agrarian vulnerability.

List of Figures

Fig 1.1 ESED Building, IIT Bombay	3
Fig 1.2 IPCC AR5 Risk Assessment Flowchart	6
Fig 1.3 IPCC AR5 Risk Management Framework	6
Fig 1.4 Well Being function	8
Fig 2.1 Rice Yield 2001 - 2021	.13
Fig 2.2 Groundwater 2001 - 2021	.13
Fig 2.3 Rice Parameters Correlation Values	.16
Fig 2.4 Wheat Parameters Correlation Values	.16
Fig 2.5 Predictive Power Score Decision Tree	.17
Fig 2.6 India NDVI (for Rice) 2001	.19
Fig 3.1 Original and Predicted Yields using Linear Regression	.20
Fig 3.2 Original and Predicted Yields using Regularization	.21
Fig 3.3 Original and Predicted Yields using XGBoost	22
Fig 4.1 Snapshot from IITB Climate Enthusiasts Workshop	.25

List of Table

Table 2.1 Vulnerability Indicators	11
Table 2.2 Rice Highest PPS Values	18
Table 2.3 Wheat Highest PPS Values.	18
Table 3.1 Model Comparison for Rice Data	23
Table 3.1 Model Comparison for Wheat Data	23

List of Abbreviations

IIT	Indian Institute of Technology
ESED	Environmental Science and Engineering Department
ESRL	Environmental Systems and Research Laboratory
GIS	Geographic Information System
MODIS	Moderate Resolution Imaging Spectroradiometer
DES	Directorate of Economic and Statistics
DACFW	Department of Agriculture, Cooperation and Farmers Welfare
IMD	Indian Meteorological Department
IITM	Indian Institute of Tropical Meteorology
NASA	National Aeronautics and Space Administration
IPCC	Intergovernmental Panel on Climate Change
ESA-CCI	European Space Agency Climate Change Initiative
AR5	Assessment Report 5
CGWB	Central Groundwater Control Board
ISMR	Indian Summer Monsoon Rainfall
CWWG	Crop Weather Watch Group
VI	Vulnerability Index
PPS	Predicted Power Score
ANN	Artificial Neural Networks
ML	Machine Learning

Table of Contents

Acknowledgement	i
Abstract	ii
List of Figures	iii
List of Tables	iv
List of Abbreviations	V
Table of Contents	vi

Chapter 1: Introduction

1.1 Indian Institute of Technology, Bombay Research Internship	1
1.2 ESED, IIT Bombay	2
1.3 ESRL	3
1.4 Introduction	4
1.5 Defining Vulnerability	5
1.6 Quantifying Vulnerability	7
1.6.1 Sensitivity	7
1.6.2 Exposure	8
1.6.3 Adaptive Capacity	9

Chapter 2: Methodology

2.1 Identifying the parameters	10
2.2 Data Collection	12
2.3 Normalization of Indicators	13
2.4 Correlational Score	14
2.5 Predictive Power Score	17
2.6 Mapping the data	19

Chapter 3: Results

3.1 Linear Regression	20
3.2 Linear Regression with Regularization	21
3.3 XGBoost (Extreme Gradient Boosting) Regressor	22
3.4 Model Comparison	23

Chapter 4: Conclusion

4.1 Summary	24
4.2 Experience	25

References

CHAPTER 1 INTRODUCTION

1.1 Indian Institute of Technology Bombay Research Internship

IIT Bombay has made concerted efforts to align its R&D focus with the national goal of achieving technological self-reliance. Students and faculty conduct research projects in thrust areas of science and engineering. Its preeminent position at the cutting-edge of research is reflected in its impressive list of research projects, which cater to both our national needs and global developments.

Education and research are the twin pillars of IITB and the ambience is one in which new ideas and creativity can flourish. A key goal of the Institute is to provide a creative atmosphere in which higher studies and research thrive amongst the students and the faculty. IIT Bombay's commitment to merging education with the creation of knowledge provides a fertile ground for productive research that has led to a range of scientific and technological achievements.

The IITB Research Internship Award is designed to be an educational and professional research experience. These awards are available for specific research projects. The details of these projects are made available to the candidates so that they can apply for projects of their interest and prepare themselves well for a rigorous selection procedure.

1.2 Environmental Science and Engineering Department (ESED), IIT Bombay

The Environmental Science and Engineering Department (ESED) was established in 1985 as a Centre for Environmental Science and Engineering, and recently in February 2019 got the department status. Before this, an "Environmental Science and Engineering Group " composed of faculty members from various allied disciplines existed on campus since 1977. ESED currently has a dedicated group of 16 faculty members with multi-disciplinary backgrounds and interests. This program offers coursework and research opportunities leading to master's and doctoral degrees and ultimately enables our graduates to contribute to the solution of current and future environmental problems. Since the beginning, the Department has established and maintained strong links with leading industries, institutions and national and international funding agencies. Research projects are currently funded by renowned agencies such as CIAR (Centre for Indoor Air Research, USA), DST (Department of Science and Technology), AERB (Atomic Energy Regulatory Board) and MOEFCC (Ministry of Environment, Forest and Climate Change).

1.3 Environmental Systems and Research Laboratory (ESRL)

ESRL is situated at the Environmental Science and Engineering Department, IIT Bombay, but is closely collaborating with the Department of Civil Engineering, Interdisciplinary Program in Climate Studies and Centre for Urban Science & Engineering. People from diversified fields make ESRL interdisciplinary in a true sense. Lab primarily works on simulation and optimization of various water resources and environmental systems. As human-induced and natural change is unequivocal, the research team here is focused on the quantification of the impacts of climate change on hydrology, water resources and agriculture. Minorly working on solid waste management with the perspective of optimization and risk assessment.

Fig 1.1 ESED Building, IIT Bombay

1.4 Introduction

India has a population of approximately 1.3 billion, which is equivalent to 17.8% of the total world population, with agriculture depicting one of the most crucial economic sectors and key employment areas for the majority of population. An approximate 20% of the nation faces food insecurity issues, crop production needs to be doubled in order to meet the increasing food demand. Rising temperatures and shifting weather patterns threaten the crop production, posing severe danger to the current agricultural economy. Pathak et al. noted that an increase in minimum temperatures over the Indo-Gangetic plains in India caused downward trends in both rice and wheat yields. Rupa Kumar et al. further observed that yields of India's major crops such as rice, maize and wheat, were significantly associated with the stability of Indian Summer Monsoon Rainfall (ISMR).

The aim of the study is to map-out the vulnerability indices at district level which is identified by aggregating the biophysical, socio-economic and meteorological indicators with regard to the crops grown over India. For this study, we have considered the two main crops of India which are wheat and rice as they contribute to 75% of India's agriculture(Ministry of Agriculture). This data shall be used to establish a machine learning model to derive the agricultural vulnerability. ML-based climate-induced agricultural vulnerability mapping is a promising tool for helping India to adapt to climate change and build a more resilient agricultural sector.

4

1.5 Defining Vulnerability

The term 'vulnerability' is used in many different ways by various research communities, such as those concerned with secure livelihoods, food security, natural hazards, disaster risk management, public health, global environmental change, and climate change.

Three main models for conceptualizing and assessing vulnerability can be distinguished. The *Risk - Hazard framework* is characteristic for the technical literature on risk and disaster management. It conceptualizes vulnerability as the dose - response relationship between an exogenous hazard to a system and its adverse effect. The *Social Constructivist framework* prevails in political economy and human geography. It regards (social) vulnerability as a priori condition of a household or a community that is determined by socio-economic and political factors.

But the framework applied for the vulnerability analysis in agriculture due to climate change is the *IPCC framework* which defines vulnerability as the degree to which a system is susceptible to, or unable to cope with, adverse effects of climate change, including climate variability and extremes. Vulnerability is a function of the character, magnitude, and rate of climate variation to which a system is exposed, its sensitivity, and its adaptive capacity.

Fig 1.2 IPCC AR5 Risk Assessment Flow Chart

Fig 1.3 IPCC AR5 Risk Management Framework

1.6 Quantifying Vulnerability

Quantifying vulnerability integrates four essential concepts: the state of the system relative to a threshold of damage, sensitivity, exposure and adaptive capacity.

1.6.1 Sensitivity

Defining the vulnerability of a system first requires understanding the sensitivity of the system to different stressors and identifying a threshold of human wellbeing at which the system is said to be "damaged". The vulnerability of a system to small changes in forcings is a function of the system's sensitivity to a given perturbation and the relative proximity of the system to its damage threshold.

$$V = f\{\text{sensitivity/state relative to a threshold}\}$$
 (1.6.1.1)

$$V = f \left(\frac{\left| \frac{\partial W}{\partial X} \right|}{\frac{W}{Wo}} \right)$$
(1.6.1.2)

Where, W_0 = Threshold value of yield below which the system is said to be damaged (varies temporally and spatially)

W = Actual yield (Well-Being)

X = Climate stressor for the given yield W

1.6.2 Exposure

Different communities and ecosystems are exposed to varying magnitudes and frequencies of disturbing forces, often resulting in differential vulnerabilities. By slightly modifying these equations for calculating vulnerability with respect to yield [Houghton et al. (2001)] can capture these differences in exposures.

$$V = \int \left(\frac{\left|\frac{\partial W}{\partial X}\right|}{\frac{W}{Wo}}\right) P_{x} dX \qquad (1.6.2.1)$$

Where P_X is the probability of the occurrence of a climatic stressor X.

Fig 1.4 Well Being function graph with the differences after adaptation

1.6.3 Adaptive Capacity

Adaptive Capacity is defined as Extent to which a system can modify its circumstances to move to a less vulnerable condition. It is the difference in the vulnerability under existing conditions and under the less vulnerable condition to which the system could potentially shift.

$$A = V(Existing \ Conditions) - V(Modified \ Conditions)$$
(1.6.3.1)

The capacity to adapt is distinct from adaptations that a system has made in the past to accommodate disturbing forces. Once the potential to adapt has been fully realized it becomes part of the system's normal functioning and is manifested as a decrease in Sensitivity or an increase in the state relative to the threshold of damage and a corresponding decrease in the vulnerability (Fig 1.4).

A system could decrease its vulnerability by modifications that would lead to one or more of the following:

- 1. Shift in the well-being function that decreases the Sensitivity to critical stressors
- 2. Change in the position relative to a threshold of damage
- 3. Modification in the system's exposure to stressors of concern

CHAPTER 2: METHODOLOGY

2.1 Identifying the parameters

Vulnerability Index (VI) is a metric of a system that characterizes the vulnerability of a system (here system being the district) to the sectors identified. It is important to note that VI values only provide a quantified perception of the status of vulnerability of a system and do not have any stand-alone significance.

Choosing the right parameters for a machine learning model is an important step in developing a climate-induced agricultural vulnerability mapping model for India. A total of forty-two (42)* (some indicators were removed after pre-processing) pertinent indicators were chosen to reflect an effect on the Indian rice and wheat agricultural system in the previous two decades (2001 and 2010). Indicators were selected based on the availability of district-level data for the agricultural sector. Additionally, Indicators were classified into two segments adaptation and vulnerability segments based on the impact of each parameter to agricultural vulnerability, i.e., positive and negative respectively.

Selection of appropriate indicators used for vulnerability assessment to climate change is an important task, depending on the outcome of research and study area. Table 2.1 describes the listed indicators for this study and their relationship with vulnerability.

Indicator	Impact on VI
Groundwater level-pre monsoon and post monsoon	Positive
Wet spell length	Positive
Average wet spell length	Positive
Maximum wet spell length	Positive
Maximum (minimum) temperature warm spell length	Positive
Maximum (minimum) temperature average warm spell length	Positive
Maximum (minimum) temperature maximum warm spell length	Positive
Maximum (minimum) temperature cold spell length	Positive
Maximum (minimum) temperature average cold spell length	Positive
Maximum (minimum) temperature maximum cold spell length	Positive
Crop cultivable area	Negative
Normalized difference vegetation index (NDVI)	Negative
Soil moisture	Negative
Tap Water	Negative
Well water, Tube well, Hand pump	Negative
River canal Spring	Negative
Agricultural credit societies	Negative
Power supply for agricultural use	Negative
Agricultural area by source	Negative
Agricultural cultivators & Labours	Negative
Marginal cultivators & Labours	Negative

Table 2.1 Indicators and their relationship with Agricultural Vulnerability

2.2 Data Collection

All indicators were quantified using secondary sources of data. For socio-economic indicators, Census data can be used to identify areas of strength and weakness in the agricultural sector and to develop targeted interventions to support agricultural production. Meteorological indicators Meteorological Department (IMD) India manages a network of meteorological stations that collect information on temperature, precipitation, humidity, and other weather-related factors. The IMD dataset gives a more clear and realistic picture of monsoon rainfall distribution over India. Central Ground Water Board (CGWB) monitors groundwater levels and quality throughout the country and assesses the availability of groundwater resources. European Space Agency Climate Change Initiative (CCI)soil moisture project is a global satellite-based soil moisture product. It provides long-term, high-quality soil moisture data for a variety of applications. The Department of Agriculture, Cooperation and Farmers Welfare (DACFW) provides data on crop production, prices, and other agricultural indicators through its various programs and initiatives. Crop Weather Watch Group (CWWG) is a group of experts from various government agencies and academic institutions that provides forecasts and advisories related to crop weather conditions. It is important to note that most of the indicators are subjected to the availability of data and there can be data discrepancies expected especially when Inventorization at a large scale district level data.

12005	N .	2001 - 2082	2002 - 2003	2005-2004	2004 - 2005	3085 - 2005	2065 - 2007	2067 - 2006	2008 - 2009	2009 - 2010	2010 - 2011	2011 - 2012	2012 - 2013	2013-2014	2014 - 2015	2015 - 2016	2616 - 2017	2817 - 2018	2018 - 2019	2019 - 2010	2020 - 2021
State	Elaria	Vield (Ton /Ha	Visid (Ten./Ha.	Neld (Ten./Ha.	Held (Ton, Ha	Tiele (Ton,/Ha)	Told (Ton/Ha)	Field (Ten/Ha)	Solf [Ten/Ha	Neld (Ten/Ba	Weld (Ton /Ha.)	Held (Ton /Ha.)	Weld (Ton./Ha.)	Vield (Ton./He.)	Viald (Ton./He.	Yald (Ten./Ha.	Veld (Ten./Ha.	Nold (Ton./Ha.)	Yield (Tex.,Ha) Weld (Tox./Ha	Vield (Text, HelV
1																					
Andarran und Nicobar bi	infs Nobin	3.63	21	12	1 1.3	5.7	-	-			2.8	1.63	1.14	2.38	2.3	5 2.24	e	F 0.53	1.4	2. 13	9
Andartan and Nicolar W	anda North and maddle andaman	13					3.7	ł			2.9	1.04	LN	2.01	20	2.2	2.5	<u></u>	2.1	2 1.	a
Andamas and Micobar IS	ands South and amami		2.55	2.5	2.7	1.9	1.7	-			2.37	2.81	1.2	23	17	2.0	2.7	1.05	2.3	1 34	4
Andrea Pradesh	Arantaper	2.81	2.17	7 7.4	1.3	2.43	1.9	શ્રે ા	2.9	2.8	7 2.87	2.47	2.6	2.16	2.8	2.4	2.5	2.79	2.6	2 3	a 7.91
Andrea Tradech	Chillour	2.83	1.41	1.0	2.5	1.8	1.7	1.04	2.0	1.	1 3.00	1.31	130	-131	32	1. 1.1	3.9	1.1	1,0	4 1/	8 3.58
Andria Pradesh	East godavari	3.44	3.41	1.1	31 31	2.9	6 1.51	1.09	3.6	32	5 3.1/	3.45	2.7	2.95	3.9	3 37	4.2	4.35	6 44	7 41	1 3.57
Andrea Fradesh	Guman	8.52	8.50	1 2.5	1.0	1.5	E 2.8	1.4	1.4	1.5	2 2.54	3182	1.41	1.14	1 1/	2.9	4.1	4.23	1.9	7 43	8 3.20
Andria Fradesh	Kadapa	18.5	1.99	5 2.4	3.0	2.5	2 16	2.83	1.8	.2.8	8 .184	2.94	. 2.6:	2.84	34	1. 3.0	3.2	2.54	3.2	2 3	1 2.46
Andrea Fradesh	Knabna	1.11	1.11	1 1.3	1.2	1,01	£ 2.5	3.61	2.6	1.5	0 3.07	171	3.1	326	3.6	5. 3.6	3.8	3,90	6 43	g	4 3,54
Andrea Fradesh	Kartoel	2.69	2.13	2.8	3 1,3	3.	6 3.	3 3.51	1.3	3.2	7 25	3.54	3.75	3.67	3.8	3,05		3.55	3.8	3 3/	6 3.16
Andrea Pradech	Polatara	1.51	1.11	1 3.6	1 1.1	1.2	1 34	1.63	16	17	9 13	11	16	1.84	1 2.5	5 40	1,50	1.81	1 1	5 3.1	7 3.42
Andhia Fradesh	Sparcellare	3.19	3,0	2.6	7 3.2	3.	(.).s	1.6	1.8	3.7	6 3.71	4.05	4.0	405	4.0	4.4	4.2	4.63	41	1 4.3	6 3.92
Arehva Fradesh	Sritukatare	2.1	1.18	5 2.3	4 2.3	1.2	15	8 8.05	2.0	2:	1 0.67	1.92	2.5	1.73	2.1	2.3	2.9	2.53	é 2.0	a 22	5 2,62
Andrea Friedenth	Multhepatanam	1.0	1.61	1 1.6	1.0	1.18	1.0	2.00	1.0	1.0	6 5.77	1.51	1.4	1.25	1.0	6 2.5	2.2	(33	1.7	1 24	1 2.49
Anatosi Pradeshi	Vicianagarum.	11	1.04	4 LT	2.3	1.4	1.3	2.91	2.9	2.2	1 2.61	2.15	2.5	2.48	2.6	2.91	3.04	1.91	2.3	6 3.1	2 2.88
Andrea Pradech	Word godewn	3.50	8.53	1 (68	1.9	1.0	4.5	1.63	1.5	1.2	0 1.25		1.00	1.11	2.9	5. SA	4.13	ή. A.21	4 54	a a.	8 19
Aurusch al Prodeut	Arjan				0.5	1.4	6.74	1.63	1.6	¢ 03	s 0.90	C.EK	0.54	0.74	0.6	0.61	0.6	1.01	1.0	a 1/	9 1.11
Ariatoschall Prodesti	Charging	1.37	1.41	1.5	1.5	1.5	1.7	1.73	7.0	1.0	4 1.01	7.00	3.0	7.04	23	2.51	. 23	3.31	3.2	1 3.1	\$ \$.14
Arumach al Straden h	Disang yallay	0.7:	0.5	• · · · · · ·	0.9	0.65	1.0	s (0.)	0.	0.	r 0.1	0.88	0.54	0.88	0.8	0,81	B D.9	1.01	1.0	4 13	5 12
Aruniacital Prodest	East konteng	1.31	1.3	5.1.2	5 0.7	0.7	0.7	1.8	1.8	L 9.8	5. 0.87	0.93		1.01	1.0	1.2	1.2	13	13	1 13	8 1.34
Anasachal Pradesh	East slong	0.83	1.2	6 11	1 (1)	1.81	£ (12	5 2.53	ं ् 12	14	7 158	1.71	1.60	1.63	1	£ 34	1.8	1.94	(18	3 13	4 1.84
Arunachal Prodest	Karris																		2.1	9 23	4 2.26
Arunachal Wodest	Kita dapat		200							1.11		100	-100			7.52	1.3	1.54	1.0	4. 3.8	8 2.04
Aronachal Prodech	Karang karney		1.3	5 0.8	1.3	1.0	1.8	1.22	1.2	12	1 137	1.43	1.4	1 14	4 4	4. 13	1.34	1.53	1 1	¢ 1	9 2.01
Arunachal Pradesh	Leparada				1			cente		101	-						1	2013		1	6. 1.63
Anasachal Praelesh	Latis	1.1	0.93	1.3	5 1.	1.3	£ 1.6	2 2.63	1.7	1 2.6	6 1.74	L.83	1.03	1.71	13	1 1.8	2,0	2.01	2.0	Z. 2.1	1 2.13
Aronachal Wadesit	Longsing													0.87	1.0	1.11	1.6	1.64	1.6	6 1.)	2 1.74
Arupuschail Prosbech	Lower diffing valley		.1.41	1 1.2	1.5	1.55	6 .1.3	2 1.23	3.2	10 D	6 12	1.33	1.21	1.1	1.1	(1)	1.4	1.52	1.5	a 1.1	4 1,55
Animachai Priadesh	Report Giang					0.2		0.00	1973	2.4							2603	1	15	4	4 1.56
Arunachal Pradesh	Lower subarses	0.1	1.3	1	2 1.	1.7	17	3.25	12	1.2	3 1.51	0.14	1.7	1.77	19	1.9	1.2	2.24	2.0	2 2.0	6 2.07
Arunachal Pradeut	Nerral															: 1	2.2	5.5	.0.2	7. 2.3	9 3.2
Arunachal Pradesit	Pakle tessang																			1.8	3 1.35
Arialisch all Proidest	Papumpare	3.64	1.0	6 J.S	1.5	1.2	1.4	9 1.54	1.5	1.7	4 1.63	1.73	1.00	1.88	2.0	4 2.0	1.93	1.90	1.9	a	2 2.01
Annadial Prodest	Shi yami			10.07		1.07						11.5					2911			3.6	2 1.64
Arunacital Pradest	Slarg			-	-	-	-	-	-		-				-	1.3	4 15	.1.54	21	7 3	2 2.11
Annuchal Phadest	Tenerg	1.63	1.43	3 1.3	4 1.3	1.3	5 1.4	1.41	4 13	1 1.0	3 1.04	1.11	1.1	1.05	1.5	5 1.5	5 19	1.03	- 1	7. 1.1	1 1.98
Arunachai Pradest	Titas	1.2	0.4	5 0.9	B 0.4	0.5	6 0.7	1.73	1.7	0.5	1 0.8	0.67	0.8	0.87	1.2	<u>6 (1</u>)	4 1.3	1.34	6 13	6 14	2 1.45
Arunachal Madeah	Uppersing		0.58	8 0.5	1.2	1.3	1.2	7 1.15	1.1	11	1.11	1.25	1.25	1.25	1.3	1.9	1.1	1.1.1	1	9 3.5	S 1.94
Arunachal Wrattenh	Upper scharts ri	0.78	1.14	4 1.5	5 1.3	1	1.0	8 2.13	13	1.2	6 138	1.46	13	181	19	2 14	2.0	2,06	2.0	2 2.1	1 2.13
Arunachal Pradesh	West komeng	1.3	1.0	5 D.8	1 01	0.8	0.031	1.94	1.0	0.9	2 0.90	0.98	1.00	1.01	14	5 14	i 14	8	1.5	7 13	7 1.89
Ananachal Prodent	Wind slang	1.11	1.1	1 1.2	5 0,7	0.9	6.3	1.81	4.12	0.82	0. 0.1	0.58		0.03	1.0	110	12	1.55	(<u>1</u>	0 1/	Z 1.63
Posam	Balsia					1.31	1.2	8 1.24	1.7	N 11	0 154	176	1.1	1.87	1 2	2 2.0	1.3	2.24	24	5 24	1 1.95
Auurri	Berpris	1.11	1.0	1 1.2	8 D.R	1.12	1.02	2 1.13	3.30	1.9	s 1.1	1.65	21	2.7	1.7	1.7	7.3	1.0	. J.1	0 2/	2 2,34
Assam	Bisvjorath						-	-			1				100			1		1	1.86
Ausem	Berguguan	1.11	11	1.3	1.0	1.0	1.9	5 1.01	1.2	11	6 1.63	1.54	1.7	2.34	2.2	Li	- 33	3.03	1	7 3.5	2 1.64
Assam	Cacher	23	2.6	- L1	1	1.95	1.6	8 8.95	2	2.0	6 2.15	1.94	21	1.83	2.2	2,0	1.9	1.55	2.2	42.3	72.38
Acsam	Chatuldeo																-				1.95

Fig 2.1 Rice Yield 2001 - 2021 Data Inventorization

State	61 District	Minimum Observed Range of Water Level (2012 -	20 Maximum Observed flange of We	ster Level (2012 - 20	Average Ground Water Level
Andaman and Nicohar F	dands				
Andhra Pradesh	AMANTAPUR		0.01	199.33	F 199,68
Andhra Pradesh	CHITTOOR		0	99.5	49.75
Andhra Pradesh	CUDDAPAH		0.17	99.5	49,835
Andhra Pradesh	EAST GODAVARI		0.01	155.42	77.715
Andhra Pradesh	GUNTUR		0.03	29.5	19.765
Andhra Pradesh	KRISHINA		0.01	38.75	19.38
Andhra Pradesh	KURNOOL		0.05	53.4	26.725
Andhra Pradesh	NELLORE		0.01	17	8.52
Andhra Pradesh	PRAKASAM		6.03	39.5	19.765
Andhra Pradesh	SRIKAKULAM		0.24	12.74	6.49
Andhra Pradesh	VEAKHAPATNAM		80.0	12.3	6.19
Andhra Pradesh	VIZIANAGABAM		0.15	9.57	4.85
Anothern Providenth	WEST OCIDAMENT			10.4	14.2
An machal Printerin					
Assart	DARPETA		0.12		2.58
Annarr	BONDARDON		0.21	0.55	4 795
Assam	CACHAR		0.02	5.45	2 735
Assam	DARBANG		0.03	6.11	3.075
Anthen	DHEMAN		0.13	4.01	151
Arran	DHURRI		0.02	10.41	1 1 1 1 1
Account	DIBBUGARH		0.24	6.21	2 175
Austra	COMPARA		0.54	0.21	4.000
Access	GOI & GAAT		13	0.51	4333
Posaam.	GOLHONNI		2.3	2.02	0.00
Assam	HIEDAGENDI		0.13	5.04	2.59
Assem	(CHORA)		0.32	4.05	2.185
Assam	KAMBUP		0.01	8.21	4.11
Assem	KARBI ANGLUNG		0.15	10.5	0.005
Assam	KARIMGANJ		0.01	7.41	111
Assam	KOKRAJHAR		0.85	5.21	3.04
Assam	LAKHIMPUR		0.06	5.24	. 2.65
Assam	MARIGAON		0.65	8.06	4.355
Assam	NAGAON		0.07	11	5.535
Assam	NALBARI		0.94	3.81	2.375
Assam	SIVSAGAR		0.34	6.79	3,565
Assam	SONITPUR		0.14	9.54	4.84
Assam	TINSURIA		0.26	6.83	3.555
Ethar	ARARIA	1	0.61	5.91	1.26
Bihar	AURANGABAD		0.05	14	7.025
Bihar	BANKA	3	0.36	12.10	6.26
Bihar	BEOUSARA		0.46	12	6.23
Bihar	BHAGALPUR		0.29	36.47	\$35
Bihar	BHOJPUR	2	0.46	10.88	1 5.67
Bihar	BUXAR		0.36	16.1	8.28
Bihar	DARBHANGA		0.19		4.595
Biher	GAYA		0.3	11.4	5.85
Bihar	GOPALGANI		0.01	15	7.505
Bihar	JAMUI		0.1	15.8	1 7.95
Bihar	JEHANABAD		0.6	10.4	5.5
Bihat .	KAIMUR		0.55	13.55	2.05
Bihar	KATIMAR	1	0.92	9.7	5.31
Riber	KHAGARIA		0.6	8.93	4.765

Fig 2.2 Groundwater 2001 - 2021 Data Inventorization

2.3 Normalization of Indicators

Indicators were normalized based on their functional relationship with vulnerability. Two of functional relationship are possible:

Positive Relationship - vulnerability increases with increase in the value of the indicator. Following formula can be used when an indicator has a positive relationship,

$$Xij(p) = \frac{Xij - Min \, i \, \{Xij\}}{Max \, i \, \{Xij\} - Min \, i \, \{Xij\}}$$
(2.3.1)

Negative Relationship - vulnerability increases with decrease in the value of the indicator. Following formula can be used when an indicator has a negative relationship,

$$Xij(n) = \frac{Max i \{Xij\} - Xij}{Max i \{Xij\} - Min i \{Xij\}}$$
(2.3.2)

Where Xij is the variable that is being normalized and has the value of the jth indicator for the ith region, Xij(p) and Xij(n) are the normalized values, which lie between 0 and 1. The purpose of normalization is to adjust different indicators with different units to the same dimensionless unit. The value at 0 represents the least impact and the value at 1 represents the greatest effect.

2.4 Correlational Score

A correlation score in machine learning is a measure of the strength of the relationship between two variables. It is typically calculated using the Pearson correlation coefficient, which ranges from -1 to 1.

$$r = \frac{\sum (x_i - \bar{x}) (y_i - \bar{y})}{\sqrt{\sum (x_i - \bar{x})^2 \sum (y_i - \bar{y})^2}}$$
(2.4.1)

It is a widely accepted measure of the 'goodness of fit' of a line fitted to a set of observations/variables. A high correlation indicates the variables tend to move in tandem. A low correlation means the variables are not closely associated in their fluctuations. Knowledge of correlation helps in gaining an understanding on the relationships between the different elements. It provides insight into how changes in one variable may correlate with or predict changes in another.

For this context, high correlation values with two indicators are considered, this can be used to model the dependent variable (yield) from the independent variable (indicators). Fig 2.3 and Fig 2.4 illustrate the correlation matrix of Rice and Wheat indicators respectively.

Fig 2.3 Rice Parameters Correlation Values

Fig 2.4 Wheat Parameters Correlation Values

2.5 Predictive Power Score

The PPS is an asymmetric, data-type-agnostic score that can detect linear or non-linear relationships between two columns. The score ranges from 0 (no predictive power) to 1 (perfect predictive power). It can be used as an alternative to the correlation (matrix). It helps to find parameters which has high predictive power of the target

Fig 2.5 Predictive Power Score Decision Tree

Decision trees are a good choice for calculating the PPS of a variable because they are able to detect non-linear relationships between variables. This can be used to decide a threshold which helps to use the high predicative independent parameters for prediction. Table 2.2 and Table 2.3 lists down the top 10 indicators with the highest PPS value.

Parameter	PPS
Agricultural_labours_0	0.495412
MWSL_1	0.489666
WSL_1	0.486232
River_canal_0	0.480509
Agricult_area_by_source_0	0.478282
TmxMWSL_1	0.471739
Tank_Water_0	0.47151
marginal_cultivators_0	0.467817
TmnAWSL_1	0.460001
NDVI_0	0.456195

Table 2.2 Rice Highest PPS Values

Table 2.3 Wheat Highest PPS Values

Parameter	PPS
River_canal_0	0.682945
Marginal_Labours_0	0.631925
Tank_Water_0	0.625767
Well_water_0	0.575086
Soil_moisture_0	0.574638
Tap_Water_0	0.567826
GWL_PostMonKharif_OND_1	0.556592
Agricultural_credit_societies_0	0.552363
marginal_cultivators_0	0.550951
Tube_well_0	0.544885

2.6 Mapping the data

For mapping the datasets against each district of India, GIS and Folium (for Python) to. District-level shapefile for India is open sourced and can be exported from the internet. QGIS is a free and open source geographic information system, It supports viewing, editing, printing, and analysis of geospatial data in a range of data formats. If working on python, Folium can be used. Folium is a Python library that helps to create interactive Leaflet maps to visualize data that's been manipulated in Python. Both the Platforms can be used to create a map of India showing the values of each parameter in your dataset for each district. Fig 2.6 illustrates the use of Folium to map the NDVI for Rice in the year 2001.

Fig 2.6 India NDVI (for Rice) 2001

CHAPTER 3: RESULTS AND INFERENCES

3.1 Linear Regression

Linear regression is a machine learning algorithm that predicts the value of unknown data using known data. Also defined as a statistical model, it can be used to predict a continuous variable by fitting a line to the data and then applying the same line to make predictions.

$$\widehat{Y}_{l}=X(slope)+b$$
 (3.1.1)

Predicted yield (Y*i*) is calculated using the normal linear line considering a single feature linear model.

Rice 2001 Predicted Yield

Fig 3.1 Original and Predicted Yields using Linear Regression

3.1 Linear Regression with Regularization

Regularization is a machine learning technique that controls the complexity of a linear regression model by penalizing coefficients that are not important for prediction. Lasso and ridge regularization are two techniques that can be used to improve the performance of linear regression models. This study utilizes the Ridge Regularization, it reduces overfitting in the model and includes all the features present in the model.

$$J(m) = \sum_{i=0}^{n} (\hat{y} - y_i)^2 + \lambda \,(slope)^2 \tag{3.1.2}$$

Rice 2011 Predicted Yield

3.3 XGBoost (Extreme Gradient Boosting) Regressor

XGBoost is a type of ensemble learning algorithm, which combines predictions of multiple individual models, often decision trees, in an iterative manner. XGBoost works by iteratively building a sequence of decision trees. Each decision tree is trained on the residuals of the previous tree, and the predictions of all of the trees are then combined to produce the final prediction. It doesn't require optimization of the parameters or tuning, so it can be used immediately after installation.

Rice 2001 Predicted Yield

Fig 3.3 Original and Predicted Yields using XGBoost

3.3 Model Comparison

Following the application of models, they are compared in terms of accuracy using the R2 formula for coefficient determination. measure that provides information about the goodness of fit of a model. It can also be described as a statistical measure of how well the regression line approximates the actual data. XGBoost shows promising results with higher accuracy and less deviation from the original values

Model	Train Data	-	Test Data	
	Accuracy	R^2	Accuracy	R^2
Linear	98.65%	0.64	98.57%	0.61
Ridge	98.59%	0.63	98.45%	0.59
XGBoost	99.77%	0.93	99.14%	0.76

Table 3.1 Model Comparison for Rice Data

Table 3.2 Model Comparison for Wheat Data

Model	Train Data		Test Data	
	Accuracy	R^2	Accuracy	R^2
Linear	98.85%	0.74	98.63%	0.71
Ridge	98.79%	0.73	98.50%	0.68
XGBoost	99.71%	0.93	99.20%	0.91

CHAPTER 4: CONCLUSION

4.1 Conclusion

Numerous studies indicate the benefits of introducing Machine Learning (ML) to map agricultural vulnerability. ML algorithms are able to analyze the intricate interactions between meteorological and socioeconomic elements and correctly forecast how vulnerable systems would be. This can help policy makers and other concerned stakeholders prioritize adaptations and remediation measures by identifying the regions most at risk in a cost effective and efficient manner.

However, it should be duly noted that ML heavily depends on the availability of data as it has a significant impact on how ML Models perform. While the indicator approach is valuable for monitoring trends and exploring conceptual frameworks, indices are limited in their application by considerable subjectivity in the selection of variables and their relative weights; it often leads to a lack of correspondence between the conceptual definition of vulnerability and the metrics. Additionally, It is also forced to link the variables of concern for a region to the measure of vulnerability and as a result the measure becomes difficult to apply in diverse settings.

Further, continuing the study, we shall also explore the use of Artificial Neural Networks (ANN) in predicting the vulnerability at national level.

4.2 Experience

My time spent at IIT Bombay has been that of constant growth and learning. Working at IIT provided an environment conducive to new ideas and networking with like minded individuals not just from Environmental Science and Engineering Department but from other disciplines too.

Besides the regular work, I also had the pleasure to attend numerous events at the IIT Bombay campus such as the *Induction Workshop for IITB Undergraduate Climate Enthusiasts* that focused on breaking down the basics of climate change and other related concepts at an undergraduate level; *National Environmental Conference (NEC)* which showcased different research projects of different fellows from around the nation. TATVA, which was the inaugural event of the ESED, at IIT Bombay.

Fig 4.1 Snapshot from IITB Climate Enthusiasts Workshop

Overall, My tenure as a Research Intern at IIT Bombay has been a fruitful journey, expanding my horizons for learning and fueled my passion for working towards climate resilience.

References

United Nations, Department of Economic and Social Affairs, Population Division 2017
 World PopulationProspects 2017 – Data Booklet ST/ESA/SER.A/401.

 Agriculture and Food Management India Economic Survey 2017 – 18 Volume 2 Government of India.

3. Wheeler T, von Braun J. Climate change impacts on global food security. Science. 2013 Aug 2;341(6145):508-13. doi: 10.1126/science.1239402. PMID: 23908229.

4. Risk and Vulnerability Assessment of Indian Agriculture to Climatic change[C A Rama Rao, B M K Raju, Adlul Islam, A V M Subba Rao K V Rao, G Ravindra Chary, R Nagarjuna Kumar, M Prabhakar K Sammi Reddy, S Bhaskar and S K Chaudhari]. National Innovations in Climatic Resilient Agriculture ICAR-Central Research Institute or Dryland Agriculture, Hyderabad, India.

5. Füssel, H.M. and Klein, R.J. (2006) Climate change vulnerability assessments: An evolution of conceptual thinking. Climate Change, 75, 301-329.

 Luers, A. L., Lobell, D. B., Sklar, L. S., Addams, C., & Matson, P. A. (2003). A method for quantifying vulnerability, applied to the agricultural system of the Yaqui Valley, Mexico. Global Environmental Change, 13(4), 255-267.

7. Sharma, T., Vittal, H., Karmakar, S., & Ghosh, S. (2020). Increasing agricultural risk to hydro-climatic extremes in India. Environmental Research Letters, 15(3), 034010.

Houghton, J.E.T. & Ding, Y. & Griggs, David & Noguer, Maria & van der Linden, Paul
 & Dai, X. & Maskell, M. & Johnson, C. (2001). Climate Change 2001: The Scientific Basis.

9. Andrew Crane-Droesch(2018), Machine learning methods for crop yield prediction and climate change impact assessment in agriculture,Environmental Research Letters, 13 (2018) 114003.

IPCC, 2023: Climate Change 2023: Synthesis Report. Contribution of Working Groups I,
 II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change
 [Core Writing Team, H. Lee and J. Romero (eds.)]. IPCC, Geneva, Switzerland, pp. 35-115.

11. Holand IS, Lujala P and Rød JK 2011 Social vulnerability assessment for Norway: A quantitative approach Nor. J. Geogr. 65(1) 1-17.

12. J.T. Houghton,Y. Ding,X. Dai,K. Maskell,C.A. Johnson,David J Griggs,Paul van der Linden,Maria Noguer,Climate Change 2001: The Scientific Basis,IPCC(2001).

13. Krupnik, T.J., C. Baethgen, P. Thornton, et al. (2020). Field-based crop phenology monitoring with high temporal resolution satellite imagery: Development and validation in the context of agricultural vulnerability assessment. Remote Sensing of Environment, 240, 111683.

14. Sharma T et al., 2018 Understanding the cascade of GCM and downscaling uncertainties in hydro-climatic projections over India Int. J. Climatol. 38 178–90.

15. Singh, S. K., R. Sharma, and R. Singh. (2021). Evaluating the role of climatic and socio-economic factors in agricultural vulnerability: a machine learning approach. Natural Hazards, 107(3), 2247-2267.

16. Anandhi A et al 2016 Changes in spatial and temporal trends in wet, dry, warm and cold spell length or duration indices in Kansas, USA Int. J. Climatol. 36(12) 4085-4101.

17. Gómez, M., D. Läderach, C. Vaughan, et al. (2018). Mapping climate vulnerability and poverty in Africa. Climate Risk Management, 22, 47-56.

18. Loi DT, Huong LV, Tuan PA, Hong Nhung NT, Quynh Huong TT, Hoa Man BT. An Assessment of Agricultural Vulnerability in the Context of Global Climate Change: A Case Study in Ha Tinh Province, Vietnam. Sustainability. 2022; 14(3):1282.

Lobell D B et al 2008 Prioritizing climate change adaptation needs for food security in
 2030 Science 319 607–10

20. Porter J R, Howden M and Smith P 2017 Considering agriculture in IPCC assessments Nat. Clim. Change 7 680

21. Zhao C et al 2017 Temperature increase reduces global yields of major crops in four independent estimates Proc. Natl Acad. Sci. USA 114 9326–31

22. Lobell D B and Field C B 2007 Global scale climate–crop yield relationships and the impacts of recent warming Environ. Res. Lett. 2 014002

23. Singh R and AchutaRao K 2018 Quantifying uncertainty in twenty-first century climate change over India Clim. Dyn. 52 3905–28

Sherly M A, Karmakar S, Parthasarathy D, Chan T and Rau C 2015 Disaster
vulnerability mapping for a densely populated coastal urban area: an application to Mumbai,
India Ann. Am. Assoc. Geogr. 105 1198–220

25. Cutter S L and Finch C 2008 Temporal and spatial changes in social vulnerability to natural hazards Proc. Natl Acad. Sci. USA 105 2301–6

(JDW - 2024) Attendance cheet for Inter

Monthly Attendance sheet for Internship/ Project

Name of student: PRYAMEN SAJUDSTOVE

Department Name: ENV. ENG

Internship/Project commencement date: 15-JDN - 2024

Name of Industry mentor/ Faculty Mentor: PROF. SUB NON ROA KORMO ROR

Name and Address of Company /Organization: ESED, IIT BOMBAY

								ĺ																				
												11		ays=	ent D	Prese	otal H	-							Δ.			102)
0	P	8	R	D	D	Р	G	P	P	Ø	P	P	P	D	P		1.1											 Month
30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	=	10	9	8	7	6	5	4	N	

Remarks (if any)by Industry mentor/ Faculty mentor_____

A SUL- SUN

Sign of Industry mentor/Faculty mentor_

(FEB - 2024)

Monthly Attendance sheet for Internship/ Project

Name of student: DRYDMBW SRIVASTAVB

Department Name: ENV. ENG.

Internship/Project commencement date: is - J いレ - 202 ら

Name of Industry mentor/ Faculty Mentor: prof. SUBIDD NRDR RORMORD

Name and Address of Company /Organization: ESED, SIT BOMBON

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 30 31 P </th <th></th> <th>ļ.</th> <th></th> <th></th> <th></th> <th></th> <th>ers)</th>																									ļ.					ers)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 20 <th></th> <th>-</th> <th>2</th> <th>11</th> <th>Days</th> <th>sent l</th> <th>Pres</th> <th>Tota</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>7</th> <th></th> <th></th> <th></th> <th>ł</th> <th>3</th>													-	2	11	Days	sent l	Pres	Tota						7				ł	3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 26 27 26 29 30 31	\leq	P	0	E.	P		K		P	P	P	P	D	X	1	P	P	P	P	P			2	9	p (9	/		P	nth
	>	-			_		>	-	1	+	1	1	+	1	T				1	1	-	2	u	0	0	U	4	3	N N	
	0	S S	A N	2	2 9	2 2	4 2	3 24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	0	0	0	n		,	,	

Remarks (if any)by Industry mentor/ Faculty mentor_ ١

Sign of Industry mentor/Faculty mentor_

سمم 2024) Monthly Attendance sheet for Internship/ Project

Name of student: DRYAMBW SAIVDSTOVD

Enrolment Number: 2002 90113 001

Department Name: ENV, ENG

Internship/Project commencement date: 15 - Jbw - 2014

Name of Industry mentor/ Faculty Mentor: PROF. SUBNDNROR KOR KOR KOR

Name and Address of Company /Organization: ESED, エエT BOM B ハー

	Month	
	P	-
		2
		3
	σ	4
	D	5
	D	6
	P	7
	P	8
		9
		10
	P	11
н	D	12
otal F	D	13
Prese	Ð	14
ent Da	P	15
ays=		16
		17
17.	P	18
	D	19
	D	20
	P	21
	P	22
		23
		24
	P	25
	P	26
	P	27
	P	28
	P	29
		30
		31

Remarks (if any)by Industry mentor/ Faculty mentor____

Sign of Industry mentor/Faculty mentor_

(202 - 2024)

Monthly Attendance sheet for Internship/ Project

Name of student: DRYDMON SRIVDSTOVD

Enrolment Number: 200280 (1300)

Department Name: EWV. ENG

Internship/Project commencement date: ואם - 101 - עמים - 101 - 101 - 101 - 101 - 101 - 101 - 101 - 101

Name of Industry mentor/ Faculty Mentor: PROF. SUBNARWAR にんていてん

Name and Address of Company /Organization: ESED, SIT BOMBOV

	Month	
	0	-
Ī	5	N
	9	ω
	D	4
	D	S
	>	0
	-	7
	G	8
	D	9
-	J	10
	D	11
	P	12
otal		13
Pres	/	14
ent D	P	15
ays=		16
	1	17
=		18
	1.51	19
		20
		21
		22
		23
	13	24
		25
		26
		27
	Surgara	28
11		29
		30
		31

Remarks (if any)by Industry mentor/ Faculty mentor_

Sign of Industry mentor/Faculty mentor_____

Annexure 1

Enrollment no: 200280113001

STUDENT'S WEEKLY RECORD OF INTERNSHIP

DIA	RY OF THE WEEK: Dt: 15/1 TO 19/1
DEI	PARTMENT: ENV. ENG. SEM: 8
NA	ME OF THE ORGANISATION: JIT BOMBDY
NAI NAI	ME OF THE PLANT/SECTION/DEPARTMENT: ESEN CENT, SCENCE SUBMONICS
-	DESCRIPTION OF THE WORK DONE IN BRIEF
	TO ME LOB, ENTRODUCTION TO
•	THE WORK AND TERM MEETINGS.
	TECHE IN TO CORDS AND OTHER FORMALTTLES
5	REQUIRED BY THE DUTNORETSES
	REGISTRATION AND VERSESCATION.
-	TO THE PROBLEM.
-	INTRODUCT

Annexure 1

SEM: 8

Enrollment no: 2002 90113 001

STUDENT'S WEEKLY RECORD OF INTERNSHIP

NAME OF STUDENT: ARYAMAN SAJUDSTAVA

DIARY OF THE WEEK: Dt: 22/1 TO 26/1

DEPARTMENT: ENV. ENG

NAME OF THE ORGANISATION: JIT BOMBDY

NAME OF THE PLANT/SECTION/DEPARTMENT: ESED

NAME OF OFFICER INCHARGE OF THE PLANT/SECTION/DEPARTMENT: PROF. SUBNOWRON

konmokon

DESCRIPTION OF THE WORK DONE IN BRIEF

-) INTRODUCTION TO ME RESERRED PROBLEM

(i) NEED FOR MODPENG DENSCULTURE

VULDERD B55-1.

(i) DEFENITION OF VULMERDBILTY

(iii) CONCEPTUDLEZDTSON

J GOING THROUGH RESERVEL POPERS, TPCC REPORTS, CRIDP REPORTS.

-) NOT TERM UPDRTE MEETSNGS

Annexure 1

SEM: 8

Enrollment no: 200280113001

STUDENT'S WEEKLY RECORD OF INTERNSHIP

NAME OF STUDENT: DRY AMON SREVASTAVA

DIARY OF THE WEEK: Dt: 29/1 TO 272

DEPARTMENT: ENV. ENG.

NAME OF THE ORGANISATION: ITT BOMBDY.

NAME OF THE PLANT/SECTION/DEPARTMENT: ESED

NAME OF OFFICER INCHARGE OF THE PLANT/SECTION/DEPARTMENT: PROF. SUBNONKOR RORMOKDR

DESCRIPTION OF THE WORK DONE IN BRIEF

-) REDDING RESEDRCH POPERS, REVSEN DATSCLES, REPORTS AND PAST PROSECTS TO PSND OUT GAPS THAT CAN BE COVERED WITH THE ON GOING RED RESERVIN

-) ATTENDING IN-COMPUS SEMENDAS / WORKSNOP ON SOME.

-) TERM UPDRTE MEETING

Annexure 1

SEM: 8

Enrollment no: 200280113001

STUDENT'S WEEKLY RECORD OF INTERNSHIP

NAME OF STUDENT: DRYDMON SAIVOSTOVO

DIARY OF THE WEEK: Dt: 5/2 TO 9/2

DEPARTMENT: ENV. ENG.

NAME OF THE ORGANISATION: SIT BOMBDY

NAME OF THE PLANT/SECTION/DEPARTMENT: ESED

NAME OF OFFICER INCHARGE OF THE PLANT/SECTION/DEPARTMENT: PNOF. SUBMORDA

DESCRIPTION OF THE WORK DONE IN BRIEF

-) DEFINING METHODOLOGY OF THE RESEDUCH. -) INDEX BASES DOPPHODICH TO MEDSUNE AGRISCULTURAL VULNERD BITY.

-) STATSSTJCAL ANDLYSJS SUCH AS PRENCEPAL

COMPONENT DNDLYSIS (PCD) DND DDTD ENVEWPMENT DNDLYSIS (DED)

-) TEOM UPDDITE MEETSWOS

Annexure 1

SEM: 8

Enrollment no: 200280113001

STUDENT'S WEEKLY RECORD OF INTERNSHIP

NAME OF STUDENT: ARYAMAN SALVOSTAVA

DIARY OF THE WEEK: Dt: 12/2 TO 16/2

DEPARTMENT: ENV. ENG.

NAME OF THE ORGANISATION: LIT BOMBD-

NAME OF THE PLANT/SECTION/DEPARTMENT: ESED

NAME OF OFFICER INCHARGE OF THE PLANT/SECTION/DEPARTMENT: PROF. SUBNONKOR

KORMOROR

DESCRIPTION OF THE WORK DONE IN BRIEF

-) ATTENDING SEMINORS/WORSHOPS IN- COMPUS

-) ATTENDING CONFERENCES FOR INTHE ESED DEPT. CNEC 2024)

-) RESEARCH DBOUS WELL-BETWG FUNCTION

AND BTS AFFECT ON CLEMATE STRESSONS

-) TEDM UPDDTE MEETSWGS.

۱n	n	ev	11 1	0	
21		L A		•	

SEM: 8

Enrollment no: 2002 8 0113 001

STUDENT'S WEEKLY RECORD OF INTERNSHIP

NAME OF STUDENT: DRADMON SREVDSTOVD

DIARY OF THE WEEK: Dt: 19/2 TO 23/2

DEPARTMENT: ENV. ENC.

NAME OF THE ORGANISATION: JIT BOMBDY

NAME OF THE PLANT/SECTION/DEPARTMENT: ESED

NAME OF OFFICER INCHARGE OF THE PLANT/SECTION/DEPARTMENT: PROF. SUBNANCOR

konmokon

DESCRIPTION OF THE WORK DONE IN BRIEF

-) JDENTJFJING JONJCOTORS OF AGRICULTURE VULNERABIETY EN DJUDED, SEGMENTED

INTO

ci) hydrologschi

(ii) merenologton

(III) NGRS CULTURDI

CIVI SOLTO - ERCONOMIC

-) SEGMENTENG THE ENDERDTONS ENTO ADDPTEUE (+VE) and SENSETEVE (-VE) BASED ON THEER ENFLUENCE ON DERECULTURAL VULNERDBELT-)

-) TEDM UPDDITE MEETSING.

Annexure 1 Enrollment no: 2002 80 (1300)

SEM: 7

STUDENT'S WEEKLY RECORD OF INTERNSHIP

NAME OF STUDENT: AND MAN SUS VOSTAVA

DIARY OF THE WEEK: Dt: 26/2 TO 1/3

DEPARTMENT: ENV. ENG.

NAME OF THE ORGANISATION: JIT BOMBDY

NAME OF THE PLANT/SECTION/DEPARTMENT: ESEV

NAME OF OFFICER INCHARGE OF THE PLANT/SECTION/DEPARTMENT: PROF. SUBNONCON

DESCRIPTION OF THE WORK DONE IN BRIEF

- -) LEDRING DBOUT TECHNICOL DS WELL DS CODING DSPECTS ON PCD, DED.
- -) DEVELO PING CODE TO REDD PDST DDID, NORMDISSE IT AND PERORM STATSSTICAL ANDLISSE ON IT.
- -) LEDRIVENCE ABOUT DEFFERENT MACHENE LEDRIVENCE ALGORETHEM THAT CAN BE NOPLED.
- -) TEDM UP DATE MEETSNES

Annexure 1

SEM: 8

Enrollment no: 200290113001

STUDENT'S WEEKLY RECORD OF INTERNSHIP

NAME OF STUDENT: DAYOMON

DIARY OF THE WEEK: Dt: 6/3 TO 8/3

DEPARTMENT: ENV. ENG.

NAME OF THE ORGANISATION: TIT BOM BDY

NAME OF THE PLANT/SECTION/DEPARTMENT: ESEN

NAME OF OFFICER INCHARGE OF THE PLANT/SECTION/DEPARTMENT: PROF. 5UBMON 2000

DESCRIPTION OF THE WORK DONE IN BRIEF

- -> PROCURENC LOTEST DATA SETS ON CROP YEELS AND CULTEURBLE AND.
- -) DDDRIJNG DEED LEDRENSNG
- -) DOTO CLEDNING USING DIMON
- WEEKLY MEETING UPDATES

Annexure 1

Enrollment no: 200280113001

STUDENT'S WEEKLY RECORD OF INTERNSHIP

NAME OF STUDENT: ARYOMON SREVOSTOVA

DIARY OF THE WEEK: Dt: 11/3 TO 15/3

DEPARTMENT: ENVIRONMENTAL SEM: 2

NAME OF THE ORGANISATION: IIT BOMBON

NAME OF THE PLANT/SECTION/DEPARTMENT: ESED

NAME OF OFFICER INCHARGE OF THE PLANT/SECTION/DEPARTMENT: PROF. SUBMON KOR

DESCRIPTION OF THE WORK DONE IN BRIEF

-) SELECTION OF APPROPRIATE ENDE CATORS REQUIRED FOR THE STUDY, CHOSKING REGAT PARAMETERS FOR MACHENE LEARNING MODEL.

-) DATH PRE- PROCESSSNG

-) APPLECATION OF IPCL DRS FRO. FRAME - WORK FOR CONSIDERATSON OF EXPOSURE SENSITIVETY AND ADAPTIVE CAPACETY.

- WEERLY UPDDTE MEETSNG

Annexure 1

SEM: **%**

Enrollment no: 200280113001

STUDENT'S WEEKLY RECORD OF INTERNSHIP

NAME OF STUDENT: DRIPMON SQIVOSTOVO

DIARY OF THE WEEK: Dt: 18/3 TO 22/3

DEPARTMENT: ENV. ENG

NAME OF THE ORGANISATION: JIT BOMBAY

NAME OF THE PLANT/SECTION/DEPARTMENT: ESED

NAME OF OFFICER INCHARGE OF THE PLANT/SECTION/DEPARTMENT: PROF. SUBMONKOR

DESCRIPTION OF THE WORK DONE IN BRIEF

-) DATA COLLECTION FROM DIFFERENTS SOURCES.

-) RUNNING LINEDR REGRESSION

-) WEEKLY UPDDIES MEETINGS

Annexure 1

SEM: 8

Enrollment no: 2002 80113001

STUDENT'S WEEKLY RECORD OF INTERNSHIP

NAME OF STUDENT: DRYDMAN SRIVOSTOVO

DIARY OF THE WEEK: Dt: 25/3 TO 29/3

DEPARTMENT: EWU. ENG

NAME OF THE ORGANISATION: ESED JIT BOMB DY

NAME OF THE PLANT/SECTION/DEPARTMENT:

NAME OF OFFICER INCHARGE OF THE PLANT/SECTION/DEPARTMENT: PROF. SUB DONVEDA

DESCRIPTION OF THE WORK DONE IN BRIEF

-) RUNNING DRINCIPPL COMPONENT DNDLYSIS (PCD) ON THE DIFFERENT INDICATORS.

-) REDDING LITRETURE ON DORS OUTUREL VULWERDBILTY ININDID.

-) WEEKLY MEETING UPDATES

Annexure 1

SEM: 7

Enrollment no: 2002 80113001

STUDENT'S WEEKLY RECORD OF INTERNSHIP

NAME OF STUDENT: DRYDMAN SREVDSTAVD

DIARY OF THE WEEK: Dt: 1/6 TO 5/6

DEPARTMENT: ENV. ENG

NAME OF THE ORGANISATION: ITT BOMBOY

NAME OF THE PLANT/SECTION/DEPARTMENT: ESED

NAME OF OFFICER INCHARGE OF THE PLANT/SECTION/DEPARTMENT: PLOF. SUBNOWCOR

DESCRIPTION OF THE WORK DONE IN BRIEF

- -) COMPANING DEFFERENT LENEAR REGRESSEON MODELS AGAINST THE ACTUAL YIELD.
- -) FEMILENG THE BEST MODEL
- -) COONELDTIONDL MOTHIX BETWEEN THE DIFFENENT VULNERDBILTY INDICATORS
- -) WEEKLY UPDOTES MEETINGS

480 TOTAL HOURS SIGNATURE OF STUDENT O The above entries are correct and the grading of work done by Trainee is EXCELLENT) VERY GOOD / GOOD / FAIR / BELOW AVERAGE / POOR Signature of officer-in-charge Signature of Faculty Mentor of Dept. / Section / Plant Date: 29/04/2029 Date: Grading of Work, for trainee may be given depending upon your judgement about his Punctuality, Regularity, Sincerity, Interest taken, Work done etc.

Feedback Form by Industry expert

Student Name: ARYAMON SREVASTAVA Date: 2014125 Work Supervisor: PROF. SUBMARAR RARMARA Title: Company/Organization: ESED, IIT BOMBAY

Enrollment No: 200280113001

Internship Address: IIT BOMBIDY, POWDE, MUMBDE - 400076

Dates of Internship: From 15/1/25 to 15/5/25

Please evaluate your intern by indicating the frequency with which you observed the following behaviors:

Parameters	Needs improvement	Satisfactory	Good	Excellent
Shows interest in work and his/her initiatives				1
Produces high quality work and accepts responsibility			1	~
Uses technical knowledge and expertise		CALLAS .		1
Analyzes problems effectively		and the second		-
Communicates well and writes effectively	1 . A. A		V	-

Overall performance of student intern: (Needs improvement/ Satisfactory/Good/Excellent):

Excellent

Additional comments, if any:

Signature of Industry person with name and Stamp:

शुभांकर कर्माकार/Subhankar Karmakar Professor & Head Environmental Science & Engg. Dept. (ESED) IIT Bombay, Powai, Mumbai - 400076. Maharashtra, India.

Signature of the Faculty Mentor