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ABSTRACT
Nowadays, many applications require simultaneous computation of multiple independent fast Fourier transform (FFT) operations with their outputs in natural order. Therefore, this brief presents a novel pipelined FFT processor for the FFT computation of two independent data streams. The proposed architecture is based on the multipath delay commutator FFT architecture. It has an N/2-point decimation in time FFT and an N/2-point decimation in frequency FFT to process the odd and even samples of two data streams separately. The main feature of the architecture is that the bit reversal operation is performed by the architecture itself, so the outputs are generated in normal order without any dedicated bit reversal circuit. The bit reversal operation is performed by the shift registers in the FFT architecture by interleaving the data. Therefore, the proposed architecture requires a lower number of registers and has high throughput.
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                                                  CHAPTER 1
Introduction to VLSI
1.1 GENERAL
INTEGRATED CIRCUITS:
The term integrated circuit is used to describe a wide variety of devices ranging from simple logic gates through to complex state-of- the-art microprocessors. Integrated circuits basically consist of a circuit, typically made up from a number of transistors and their interconnections, fabricated from a single semiconductor chip or die.
a) Analogue integrated circuits
Analogue integrated circuits include a wide range of applications, many of which are highly specific. Some examples are the simple operational amplifiers and timers, and the more complex FM stereo decoders and single-chip FM radios.
There has been a trend towards fabricating the more commonly used analogue circuits into single chip form. An example of this is FM radio receiver, which is a fairly complex circuit when fabricated from discrete components. A FM radio receiver can now be constructed from a FM radio chip, an audio amplifier chip and a few discrete passive components.
a) Digital integrated circuits
Digital integrated circuits are devices, which are functionally based on logic gates (AND & OR gates). They are commercially available in families of devices which take their name from the fabrication method used to manufacture the devices from different families are not readily compatible in the same circuit. The more common types of logic integrated circuits are typically represented in each family of devices like TTL, Schottky TTL, CMOS and the new high speed CMOS. The CMOS family devices have a very low power consumption that makes them very popular for many applications where very high speeds are not required.


`
a) Computer integrated circuits
Computer integrated circuits are devices, which form the active components of a computer system. They are often used in conjunction with digital integrated circuits, which provide a ‘glue logic’ function. Computer integrated circuits can be functionally divided into microprocessors, memory devices and peripheral control devices.

HISTORY OF IC’s: 
The first silicon chip or integrated circuit consisting of many transistors fabricated on the same piece of silicon was made at Fairchild in 1959. More recent developments have been towards miniaturization-packing more and more active components or gates on to a single chip of silicon. The level of device complexity is usually referred to as a scale of integration. The evolution from scale integration (SSI), through large-scale integration (LSI), to very large scale integration (VLSI) has already occurred, and the scale is running out of adjectives. The scale of integration is based on the number of logic elements that constitute a device.

INTRODUCTION TO VLSI: 
VLSI stands for "Very Large Scale Integrated Circuits". It's a classification of ICs. An IC of common VLSI includes about millions active devices. Typical functions of VLSI include Memories, computers, and signal processors, etc. A semiconductor process technology is a method by which working circuits can be manufactured from designed specifications. There are many such technologies, each of which creates a different environment or style of design. In integrated circuit design, the specification consists of polygons of conducting and semiconducting material that will be layered on top of each other to produce a working chip. When a chip is custom-designed for a specific use, it is called an application-specific integrated circuit (ASIC). Printed-circuit (PC) design also results in precise positions of conducting materials, as they will appear on a circuit board; in addition, PC design aggregates the bulk of the electronic activity into standard IC packages, the position and interconnection of which are essential to the final circuit. Printed circuitry may be easier to debug than integrated circuitry is, but it is slower, less compact, more expensive, and unable to take advantage of specialized silicon layout structures that make VLSI systems so attractive. The design of these electronic circuits can be achieved at many different refinement levels from the most detailed layout to the most abstract architectures. Given the complexity that is demanded at all levels, computers are increasingly used to aid this design at each step. It is no longer reasonable to use manual design techniques, in which each layer is hand etched or composed by laying tape on film. Thus the term computer-aided design or CAD is a most accurate description of this modern way and seems more broad in its scope than the recently popular term computer-aided engineering (CAE)

APPLICATION AREAS OF VLSI:
PLAs:
Combinational circuit elements are an important part of any digital design. Three common methods of implementing a combinational block are random logic, read-only memory (ROM), and programmable logic array (PLA). In random-logic designs, the logic description of the circuit is directly translated into hardware structures such as AND and OR gates. The PLA occupies less area on the silicon due to reduced interconnection wire space; however, it may be slower than purely random logic. A PLA can also be used as a compact finite state machine by feeding back part of its outputs to the inputs and clocking both sides. Normally, for high-speed applications, the PLA is not implemented as two NOR arrays. The inputs and outputs are inverted to preserve the AND-OR structure. 
Gate-Arrays:
The gate-array is a popular technique used to design IC chips. Like the PLA, it contains a fixed mesh of unfinished layout that must be customized to yield the final circuit. Gate-arrays are more powerful, however, because the contents of the mesh are less structured so the interconnection options are more flexible. Gate-arrays exist in many forms with many names, eg: uncommitted logic arrays and master-slice. The disadvantage of gate-arrays is that they are not optimal for any task. 


Gate Matrices:
The gate matrix is the next step in the evolution of automatically generated layout from high-level specification. Like the PLA, this layout has no fixed size; a gate matrix grows according to its complexity. Like all regular forms of layout, this one has its fixed aspects and its customizable aspects. In gate matrix layout the fixed design consists of vertical columns of polysilicon gating material. The customizable part is the metal and diffusion wires that run horizontally to interconnect and form gates with the columns.
APPLICATIONS OF VLSI
	Electronic systems now perform a wide variety of tasks in daily life. Electronic systems in some cases have replaced mechanisms that operated mechanically, hydraulically, or by other means; electronics are usually smaller, more flexible, and easier to service. In other cases electronic systems have created totally new applications. Electronic systems perform a variety of tasks, some of them visible, some more hidden:
· Personal entertainment systems such as portable MP3 players and DVD players perform sophisticated algorithms with remarkably little energy.
· Electronic systems in cars operate stereo systems and displays; they also control fuel injection systems, adjust suspensions to varying terrain, and perform the control functions required for anti-lock braking (ABS) systems.
· Digital electronics compress and decompress video, even at high definition data rates, on-the-fly in consumer electronics.
· Low-cost terminals for Web browsing still require sophisticated electronics, despite their dedicated function.
· Personal computers and workstations provide word-processing, financial analysis, and games. Computers include both central processing units (CPUs) and special-purpose hardware for disk access, faster screen display, etc. 

 ADVANTAGES OF VLSI
While we will concentrate on integrated circuits in this book, the properties of integrated circuits what we can and cannot efficiently put in an integrated circuit—largely determine the architecture of the entire system. Integrated circuits improve system characteristics in several critical ways. ICs have three key advantages over digital circuits built from discrete components: 
• Size. Integrated circuits are much smaller—both transistors and wires are shrunk to micrometer sizes, compared to the millimeter or centimeter scales of discrete components. Small size leads to advantages  in speed and power consumption, since smaller components have smaller parasitic resistances, capacitances, and inductances. 

• Speed. Signals can be switched between logic 0 and logic 1 much quicker within a chip than they can between chips. Communication within a chip can occur hundreds of times faster than communication between chips on a printed circuit board. The high speed of circuits on-chip is due to their small size—smaller components and wires have smaller parasitic capacitances to slow down the signal
• Power consumption. Logic operations within a chip also take much less power. Once again, lower power consumption is largely due to the small size of circuits on the chip—smaller parasitic capacitances and resistances require less power to drive them.

1.2 VLSI AND SYSTEMS

These advantages of integrated circuits translate into advantages at the system level:
• Smaller physical size. Smallness is often an advantage in itself—consider portable televisions or handheld cellular telephones.
• Lower power consumption. Replacing a handful of standard parts with a single chip reduces total power consumption. Reducing power consumption has a ripple effect on the rest of the system: a smaller, cheaper power supply can be used; since less power consumption means less heat, a fan may no longer be necessary; a simpler cabinet with less shielding for electromagnetic shielding may be feasible, too.
• Reduced cost. Reducing the number of components, the power supply requirements, cabinet costs, and so on, will inevitably reduce system cost. The ripple effect of integration is such that the cost of a system built from custom ICs can be less, even though the individual ICs cost more than the standard parts they replace. Understanding why integrated circuit technology has such profound influence on the design of digital systems requires understanding both the technology of IC manufacturing and the economics of ICs and digital systems.


1.3 INTRODUCTION TO ASICS AND PROGRAMMABLE LOGIC:
The last 15 years have witnessed the demise in the number of cell-based ASIC designs as a means for developing customized SoCs. Rising NREs, development times and risk have mostly restricted the use of cell-based ASICs to the highest volume applications; applications that can withstand the multi-million dollar development costs associated with 1-2 design re-spins. Analysts estimate that the number of cell based ASIC design starts per year is now only between 2000-3000 compared to ~10,000 in the late 1990s. The FPGA has emerged as a technology that fills some of the gap left by cell-based ASICs. Yet even after 20+ years of existence and 40X more design starts per year than cell-based ASICs, the size of the FPGA market in dollar terms remains only a fraction that of cell-based ASICs. This suggests that there are many FPGA designs that never make it into production and that for the most part; the FPGA is still seen by many as a vehicle for prototyping or college education and has perhaps even succeeded in actually stifling industry innovation. This paper introduces a new technology, the second generation Structured ASIC that is tipped to reenergize the path to innovation within the electronics industry. It brings together some of the key advantages of FPGA technology (i.e. fast turnaround, no mask charges, no minimum order quantity) and of cell-based ASIC (i.e. low unit cost and power) to deliver a new platform for SoC design. This document defines requirements for development of Application Specific Integrated Circuits (ASICs). It is intended to be used as an appendix to a Statement of Work. The document complements the ESA ASIC Design and Assurance Requirements (AD1), which is a precursor to a future ESA PSS document on ASIC design. 

1.3.1 Moore’s Law
In the 1960s Gordon Moore predicted that the number of transistors that could be manufactured on a chip would grow exponentially. His prediction, now known as Moore’s Law, was remarkably prescient. Moore’s ultimate prediction was that transistor count would double every two years, an estimate that has held up remarkably well. Today, an industry group maintains the International Technology Roadmap for Semiconductors (ITRS), that maps out strategies to maintain the pace of Moore’s Law. (The ITRS roadmap can be found at http://www.itrs.net.)
1.3.2 APPLICATIONS FOR NEXTREME STRUCTURED ASICS:
Embedded Processing 
Nextreme Structured ASICs are ideally suited for embedded processing applications. The availability of a firm, 150MHz ARM926EJT™ processor and AMBA peripherals backed by industry standard development tools from ARM and its Connected Community™ partners, designers have the option to implement control circuits in software. A major benefit of using Nextreme for implementing embedded systems is that designers are able to make performance, area and feature tradeoffs using both hardware and software allowing for highly differentiated yet cost-optimized systems. 
Signal, Video and Image Processing 
Having to deal with programmable metal interconnect and its associated carry chain delays ultimately forced FPGA vendors to develop dedicated DSP blocks and slices to overcome performance bottlenecks. With Nextreme Structured ASICs, the elimination of massive amounts of metal interconnect means that these devices are not subject to unacceptable carry chain delays and many signal processing structured can be implemented, at speed, using logic fabric alone.  Another capability with in Nextreme that makes them particularly suitable for signal processing is memories. eRAM blocks are particularly suited for distributed applications such as semi-parallel filters and video processing. As these blocks are located very close together, they can be connected to form larger blocks up to 4Kbits per eUnit.

1.3.3 FIELD-PROGRAMMABLE GATE ARRAY (FPGA)
A field-programmable gate array (FPGA) is an integrated circuit designed to be configured by the customer or designer after manufacturing—hence "field-programmable". The FPGA configuration is generally specified using a hardware description language (HDL), similar to that used for an application-specific integrated circuit (ASIC) (circuit diagrams were previously used to specify the configuration, as they were for ASICs, but this is increasingly rare). FPGAs can be used to implement any logical function that an ASIC could perform. The ability to update the functionality after shipping, partial re-configuration of the portion of the design and the low non-recurring engineering costs relative to an ASIC design (notwithstanding the generally higher unit cost), offer advantages for many applications. 
FPGAs contain programmable logic components called "logic blocks", and a hierarchy of reconfigurable interconnects that allow the blocks to be "wired together"—somewhat like a one-chip programmable breadboard. Logic blocks can be configured to perform complex combinational functions, or merely simple logic gates like AND and XOR. In most FPGAs, the logic blocks also include memory elements, which may be simple flip-flops or more complete blocks of memory.
In addition to digital functions, some FPGAs have analog features. The most common analog feature is programmable slew rate and drive strength on each output pin, allowing the engineer to set slow rates on lightly loaded pins that would otherwise ring unacceptably, and to set stronger, faster rates on heavily loaded pins on high-speed channels that would otherwise run too slow. Another relatively common analog feature is differential comparators on input pins designed to be connected to differential signaling channels. A few "mixed signal FPGAs" have integrated peripheral Analog-to-Digital Converters (ADCs) and Digital-to-Analog Converters (DACs) with analog signal conditioning blocks allowing them to operate as a system-on-a-chip. Such devices blur the line between an FPGA, which carries digital ones and zeros on its internal programmable interconnect fabric, and field-programmable analog array (FPAA), which carries analog values on its internal programmable interconnect fabric. 


Field-Programmable Device (FPD) 
A general term that refers to any type of integrated circuit used for implementing digital hardware, where the chip can be configured by the end user to realize different designs. Programming of such a device often involves placing the chip into a special programming unit, but some chips can also be configured “in-system”. Another name for FPDs is programmable logic devices (PLDs); although PLDs encompass the same types of chips as FPDs, we prefer the term FPD because historically the word PLD has referred to relatively simple types of devices.
Programmable Logic Array (PLA)
A Programmable Logic Array (PLA) is a relatively small FPD that contains two levels of logic, an AND-plane and an OR-plane, where both levels are programmable (note: although PLA structures are sometimes embedded into full-custom chips, we refer here only to those PLAs that are provided as separate integrated circuits and are user-programmable).
Programmable Array Logic (PAL)
A Programmable Array Logic (PAL) is a relatively small FPD that has a programmable AND-plane followed by a fixed OR-plane.
Simple PLD
Refers to any type of Simple PLD, usually either a PLA or PAL.
Complex PLD 
A more Complex PLD that consists of an arrangement of multiple SPLD-like blocks on a single chip. Alternative names (that will not be used in this paper) sometimes adopted for this style of chip are Enhanced PLD (EPLD), Super PAL, Mega PAL, and others.
Field-Programmable Gate Array (FPGA) 
A Field-Programmable Gate Array is an FPD featuring a general structure that allows very high logic capacity. Whereas CPLDs feature logic resources with a wide number of inputs (AND planes), FPGAs offer more narrow logic resources. FPGAs also offer a higher ratio of flip-flops to logic resources than do CPLDs.
High-Capacity PLDs (HCPLD):
High-capacity PLDs: a single acronym that refers to both CPLDs and FPGAs. This term has been coined in trade literature for providing an easy way to refer to both types of devices. PAL is a trademark of Advanced Micro Devices.

· Interconnect -  the wiring resources in an FPD.
· Programmable Switch- a user-programmable switch that can connect a logic element to an interconnect wire, or one interconnect wire to another
· Logic Block - a relatively small circuit block that is replicated in an array in an FPD. When a circuit is implemented in an FPD, it is first decomposed into smaller sub-circuits that can each be mapped into a logic block. The term logic block is mostly used in the context of FPGAs, but it could also refer to a block of circuitry in a CPLD.
· Logic Capacity - the amount of digital logic that can be mapped into a single FPD. This is usually measured in units of “equivalent number of gates in a traditional gate array”. In other words, the capacity of an FPD is measured by the size of gate array that it is comparable to. In simpler terms, logic capacity can be thought of as “number of 2-input NAND gates”.
· Logic Density - the amount of logic per unit area in an FPD.
· Speed-Performance - measures the maximum operable speed of a circuit when implemented in an FPD. For combinational circuits, it is set by the longest delay through any path, and for sequential circuits it is the maximum clock frequency for which the circuit functions properly. In the remainder of this section, to provide insight into FPD development the evolution of FPDs over the past two decades is described. Additional background information is also included on the semiconductor technologies used in the manufacture of FPDs.

Evolution of Programmable Logic Devices:
The first type of user-programmable chip that could implement logic circuits was the Programmable Read-Only Memory (PROM), in which address lines can be used as logic circuit inputs and data lines as outputs. Logic functions, however, rarely require more than a few product terms, and a PROM contains a full decoder for its address inputs. PROMS are thus an inefficient architecture for realizing logic circuits, and so are rarely used in practice for that purpose. The first device developed later specifically for implementing logic circuits was the Field-Programmable Logic Array (FPLA), or simply PLA for short. A PLA consists of two levels of logic gates: a programmable “wired” AND-plane followed by a programmable “wired” OR-plane. A PLA is structured so that any of its inputs (or their complements) can be AND’ed together in the AND-plane; each AND-plane output can thus correspond to any product term of the inputs. Similarly, each OR plane output can be configured to produce the logical sum of any of the AND-plane outputs. With this structure, PLAs are well-suited for implementing logic functions in sum-of-products form. They are also quite versatile, since both the AND terms and OR terms can have many inputs (this feature is often referred to as wide AND and OR gates). When PLAs were introduced in the early 1970s, by Philips, their main drawbacks were that they were expensive to manufacture and offered somewhat poor speed-performance. 
Both disadvantages were due to the two levels of configurable logic, because programmable logic planes were difficult to manufacture and introduced significant propagation delays. To overcome these weaknesses, Programmable Array Logic (PAL) devices were developed. PALs feature only a single level of programmability, consisting of a programmable “wired” AND plane that feeds fixed OR-gates. To compensate for lack of generality incurred because the OR- Outputs plane is fixed, several variants of PALs are produced, with different numbers of inputs and outputs, and various sizes of OR-gates. PALs usually contain flip-flops connected to the OR-gate outputs so that sequential circuits can be realized.



Chapter  2

Fast Fourier Transform
Fast fourier transform (FFT) is one of the most commonly used operations in the wireless communication applications, such as orthogonal frequency division multiple (OFDM) accesses, ultrawideband, digital video broadcast terrestrial, and signal processing application as well. A family of pipelined FFT architectures is discussed in [1] in which single-path delay feedback (SDF) and multipath delay commutator (MDC) are very popular. There are applications, such as
image processing, array signal processing, multiple-input–multipleoutput OFDM, and so on, in which more than one data stream need to be processed. Therefore, simultaneous multiple FFT operations are required and a dedicated bit reversal circuit is also required to generate the outputs in natural order.

There are FFT architectures [2]–[5], which can handle multiple independent data streams. However, all the data streams are processed by a single FFT processor in [2] and [5]. In [5], four independent data streams are processed one by one. Similarly, eight data streams are processed at two domains in [2]. Thus, the outputs of multiple data streams are not available in parallel. In order to simultaneously process the data streams, more than one FFT processors need to be employed. In [3], one to four data streams are processed using multiple data paths for wireless local area network application. Data of different data streams are interleaved to process them simultaneously in [4]. Nevertheless, the architectures in [2]–[4] do not have any specific bit reversal circuit.

In [6]–[9], certain circuits are proposed to reorder the bit reversed FFT output into normal order. The bit reversal circuits are proposed for different radices in [8]. In [9], a similar structure is proposed for variable length FFT, whose register complexity is N. These circuits are suitable for bit reversing the data from the pipelined FFT architecture. However, only the bit reversal structures are proposed in [8] and [9]. In [6], the bit reversal circuit is integrated to FFT architecture; as a result, the total register requirement of the design is reduced from 5N/2 to 2N. Two-, four-, and eight-parallel pipelined radix- 2k decimation in frequency (DIF) feed forward FFT architectures are proposed in [10] and they need extra N registers to generate the output in natural order. Moreover, these two-, four-, and eight-parallel FFT architectures can start its operation only when x(n + N/2), x(n+3N/4), and x(n+7N/8) samples arrive, respectively. Therefore, hardware is underutilized and additional registers are required to store the first N/2, 3N/4, and 7N/8 samples.

In [7], modified MDC FFT architectures with a new data scheduling method and a rearranging structure are proposed in which the drawbacks of [10] are eliminated. The architectures in [2]–[6] and [8]–[10] operated at the frequency of incoming sample rate but the architecture in [7] operates half the clock frequency to generate the same throughput as that of [2]–[4], [6], and [8]–[10]. Thus, the throughput of the architecture in [7] is doubled, if all the architectures are operated at the same speed. Similarly, a combined single path delay commutator-SDF FFT architecture [11] with I/O in natural order is proposed in which the bit reversal is carried out only with N/2 registers. However, its throughput is low and the required
number of register is high. In [12], low complexity FFT architectures are proposed but these architectures can process only real-valued signals (signals only with real part). Moreover, they generate two outputs per clock cycle and these outputs are not in natural order. Thus, most of the recent architectures require bit reversal structures to generate the outputs in natural order.

The proposed architecture is designed to process two independent data streams simultaneously with less amount of hardware. The odd inputs, which are in natural order, are first bit reversed and then they are processed by N/2-point decimation in time (DIT) FFT. The even samples are directly processed by N/2-point DIF FFT, so its outputs are in bit reversed order. Therefore, the outputs of N/2-point DIF FFT are bit reversed. The outputs of the two N/2-point FFTs are further processed by the two-parallel butterflies to generate the outputs of N-point FFT in natural order. The bit reversing is carried out by the scheduling registers, which are actually used to delay the samples for performing the butterfly operations. Thus, the FFT architecture does not use any dedicated circuit to bit reverse the data. As a result, the proposed architecture requires less number of registers than the prior FFT designs.

              [image: ]
shown in Fig. 1, which is not the exact architecture but provides the methodology. The reordering blocks in Fig. 1 are merely present to state that the N/2 odd samples (x(2n + 1)) are reordered before the N/2-point DIT FFT operation and N/2 even samples (x(2n)) are reordered after the N/2-point DIF FFT operation. In order to compute the N-point DIT FFT from the outputs of two N/2-point FFTs, additional one stage of butterfly operations are performed on the results of the two FFTs. Thus, the outputs generated by additional butterfly stage are in natural order.

For the purpose of simplicity, the proposed 16-point FFT architecture in Fig. 2 is explained. It has two eight-point MDC FFT architectures to process two data streams. The delay commutator units present at the left side of SW1 dissociate the odd and even samples. The shift registers in the delay commutator units, which receive inputs, are used to bit reverse the odd input samples. These shift registers are called reordering shift registers (RSRs). The RSR in the last stage store outputs from the eight-point DIF FFT and bit reverses them. The BF2 carries out two-parallel butterfly operations between the bit reversed data in the RSR in the last stage and outputs from the eight-point DIT FFT. Thus, the upper and lower BF2 in the last stage generate the FFT outputs of the first and the second data streams in normal order. The two data paths from SW2 are combined together, so the word length of the data path in last stage is twice and so thick lines are used for representing the data paths and registers.



The FFT architecture in Fig. 2 is divided into six levels (L1, L2, L3, M1, M2, and M3). The RSR registers in the levels L1 and M1 reorder the odd input data and the RSR registers in the levels L3 and M3 reorder the partially processed even data. The eight-point DIF and DIT FFT operations are performed in the levels L2 and M2, respectively. The data from L1 and M1 can be forwarded to L2 and M2, respectively, or vice versa with the help of SW1. Similarly, the data from L2 and M2 can be forwarded to L3 and M3, respectively, or vice versa with the help of SW2. SW1 and SW2 have two switches (SW) to swap the data path and propagate the data to different levels. During the normal mode, the switches (SW1 or SW2) pass the data at u1, u2, u3, and u4 to v1, v2, v3, and v4, respectively. However, during the swap mode, the switches (SW1 or SW2) pass the data at u1, u2, u3, and u4 to v3, v4, v1, and v2, respectively. SW1 is in the swap mode during the first N/2 clock cycles and it is in the normal mode during N/2 + 1 to N. On the other hand, SW2 is in the normal mode during the first N/2 clock cycles and it is in the swap mode during N/2 + 1 to N. Thus, SW1 and SW2 are in different modes at any time and change their modes for every N/2 clock cycles. Moreover, if there is transition of data betweeen L y and L y+1 or My and My+1 (where y can be 1 or 2), then the switches (SW1 or SW2) are in the normal mode, and if there is transition of data between L y and My+1 or My and L y+1, then the switches
[image: ]
(SW1 or SW2) are in the swap mode. Like other control signals in the design, the control signals to the switches SW1 and SW2 are externally provided and these switch control signals swap at every N/2 clock cycles.

The two input streams to the FFT processor are represented as X1 and X2. The odd and even samples of two input streams are disassociated by the delay commutator units in L1 and M1
(X1 is disassociated into {E1(i, j ), O1(i, j )}, respectively, and X2
is disassociated into {E2(i, j ), O2(i, j )}). In these representations, i defines the nature of the data and j defines the number of the data set whose FFT has to be computed. The even set of input data [x(0), x(2), x(4) . . .] is defined as E(1, j ) and the odd set of input data [x(1), x(3), x(5) . . .] is defined as O(1, j ). E(2, j )/O(2, j ) is the set of scheduled or ordered even/odd data, which are ready to be fed to eight-point DIF/DIT FFT. The outputs of eight-point DIF/DIT FFT are defined as E(3, j )/O(3, j ), which are fed to the third level for 16-point FFT computation. Table I explains the operation of FFT and the data propagation through different levels.

The first eight samples of X1 are loaded into the registers (4D in the upper and lower arms of delay commutator unit) in L1. After eight clock cycles, the switch (SW1) is set in the normal mode and the first eight samples of X2 are loaded into the registers (4D) in M1. Simultaneously, E1(1, 1) (even samples of X1) is forwarded from L1 to L2 as E1(2, 1) to perform the eight-point FFT operation. The odd samples of X1 and X2 are bit reversed by the RSR in L1 and L2, respectively. The operation of bit reversing is explained in Section II-B.                     

After eight clock cycles, the positions of the switches SW1 and SW2 are set in the swap mode and the normal mode, respectively. The odd samples (O1(1, 1)) of X1 are forwarded from L1 to M2 as O1(2, 1) and the even samples (E2(1, 1)) of X2 is forwarded from M1 to L2 as E2(2, 1). Simultaneously, E1(2, 1) is forwarded from L2 to L3 as E1(3, 1) and reordering is performed.

After eight clock cycles, SW1 and SW2 are set in the normal mode and the swap mode, respectively. The odd samples of X2(O2(1, 1)) are forwarded from M1 to M2 as O2(2, 1) and O1(2, 1) is forwarded from M2 as O1(3, 1) to L3 where the butterfly operations with E1(3, 1) corresponding to the last stage (of the data stream X1) are performed. In the meantime, E2(2, 1) from L2 is forwarded to M3 as E2(3, 1) and reordering is performed in the RSR.

After eight clock cycles, the switch (SW2) is set to normal position to allow the partially processed odd samples (O2(3, 1)) from M2 to M3 and perform the butterfly operations of the last
stage (of the data stream X2).
Instead of using radix-2 FFTs, as shown in Fig. 2, any higher radix FFTs architecture can be used. In Fig. 3, two radix-23 64-point FFTs are used to realize 128-point FFT whose multiplier complexity is 4(log8(N/2) − .5) and working is almost the same as the 16-point FFT. The multiplier complexity of N-point radix-k FFT algorithm is 4(logk (N/2) − .5).


Bit Reversing

The proposed architecture is inspired from the architecture in [7] where N/2 data scheduling registers before the first butterfly unit are used to separate odd samples from the even samples and delaythem to generate x(n) and x(n + N/2) in parallel. In the proposed architecture, this data scheduling registers are reused to bit reverse odd samples. Similarly, N/2 data scheduling registers are used before the last butterfly unit to store the partially processed even samples until the arrival of odd samples in [7] and here, these registers are reused to bit reverse the partially processed even samples (outputs from DIF FFT). In [8], circuits that use multiplexers and shift registers for bit reversal are proposed. According to [8], if N is the even power of r , then the number of registers required to bit reverse N data is ( √ N −1)2. If N is the odd power of r , then the number of registers required to bit reverse N data is ( √ rN − 1)( √ N/r −1), where r is the radix of the FFT algorithm. In the proposed architecture, these


[image: ]       Figure 1: Proposed 16-point radix-2 FFT architecture with outputs in natural order
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                           Figure 2: Proposed 128-point radix-23 FFT architecture
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 Figure 3:RSR. (a) RSR used in 16-point FFT architecture. (b) RSR used in 64-point FFT     architecture. (c) RSR used in N-point FFT architecture.

Bit reversal circuits are incorporated in the data scheduling register to perform dual role. The RSR used in the 16-point FFT and 64-point FFT architectures is shown in Fig. 4(a) and (b), respectively. Actually, these structures are present in the places of the shift registers marked with RSR. Generalized RSR for N-point is shown in Fig. 4(c) in which c0 is N/4−( √ N/4−1)2 or N/4−(√(Nr)/4−1)(√N/(4r )−1). These registers in c0 do not involve in reordering. The control signals to the multiplexer in RSR are properly varied to interleave the data. If log2 N is even, log2 N − 2 multiplexers are required otherwise log2 N multipliers are required for bit reversal. For more details on bit reversal, [8] may be referred.






CHAPTER 3

3.1 Evolution of Computer-Aided Digital Design
Digital circuit design has evolved rapidly over the last 25 years. The earliest digital circuits were designed with vacuum tubes and transistors. Integrated circuits were then invented where logic gates were placed on a single chip. The first integrated circuit (IC) chips were SSI (Small Scale Integration) chips where the gate count was very small. As technologies became sophisticated, designers were able to place circuits with hundreds of gates on a chip. These chips were called MSI (Medium Scale Integration) chips. With the advent of LSI (Large Scale Integration), designers could put thousands of gates on a single chip. At this point, design processes started getting very complicated, and designers felt the need to automate these processes. Electronic Design Automation (EDA)[1] techniques began to evolve. Chip designers began to use circuit and logic simulation techniques to verify the functionality of building blocks of the order of about 100 transistors. The circuits were still tested on the breadboard, and the layout was done on paper or by hand on a graphic computer terminal.
[1] The earlier edition of the book used the term CAD tools. Technically, the term Computer-Aided Design (CAD) tools refers to back-end tools that perform functions related to place and route, and layout of the chip . The term Computer-Aided Engineering (CAE) tools refers to tools that are used for front-end processes such HDL simulation, logic synthesis, and timing analysis. Designers used the terms CAD and CAE interchangeably. Today, the term Electronic Design Automation is used for both CAD and CAE. For the sake of simplicity, in this book, we will refer to all design tools as EDA tools.
With the advent of VLSI (Very Large Scale Integration) technology, designers could design single chips with more than 100,000 transistors. Because of the complexity of these circuits, it was not possible to verify these circuits on a breadboard. Computer-aided techniques became critical for verification and design of VLSI digital circuits. Computer programs to do automatic placement and routing of circuit layouts also became popular. The designers were now building gate-level digital circuits manually on graphic terminals. They would build small building blocks and then derive higher-level blocks from them. This process would continue until they had built the top-level block. Logic simulators came into existence to verify the functionality of these circuits before they were fabricated on chip.
As designs got larger and more complex, logic simulation assumed an important role in the design process. Designers could iron out functional bugs in the architecture before the chip was designed further.

3.2 Emergence of HDLs
For a long time, programming languages such as FORTRAN, Pascal, and C were being used to describe computer programs that were sequential in nature. Similarly, in the digital design field, designers felt the need for a standard language to describe digital circuits. Thus, Hardware Description Languages (HDLs) came into existence. HDLs allowed the designers to model the concurrency of processes found in hardware elements. Hardware description languages such asVerilog HDL and VHDL became popular. Verilog HDL originated in 1983 at Gateway Design Automation. Later, VHDL was developed under contract from DARPA. Both Verilog® and VHDL simulators to simulate large digital circuits quickly gained acceptance from designers.
Even though HDLs were popular for logic verification, designers had to manually translate the HDL-based design into a schematic circuit with interconnections between gates. The advent of logic synthesis in the late 1980s changed the design methodology radically. Digital circuits could be described at a register transfer level (RTL) by use of an HDL. Thus, the designer had to specify how the data flows between registers and how the design processes the data. The details of gates and their interconnections to implement the circuit were automatically extracted by logic synthesis tools from the RTL description.
Thus, logic synthesis pushed the HDLs into the forefront of digital design. Designers no longer had to manually place gates to build digital circuits. They could describe complex circuits at an abstract level in terms of functionality and data flow by designing those circuits in HDLs. Logic synthesis tools would implement the specified functionality in terms of gates and gate interconnections.
HDLs also began to be used for system-level design. HDLs were used for simulation of system boards, interconnect buses, FPGAs (Field Programmable Gate Arrays), and PALs (Programmable Array Logic). A common approach is to design each IC chip, using an HDL, and then verify system functionality via simulation.


Today, Verilog HDL is an accepted IEEE standard. In 1995, the original standard IEEE 1364-1995 was approved. IEEE 1364-2001 is the latest Verilog HDL standard that made significant improvements to the original standard.

3.3 Typical Design Flow
A typical design flow for designing VLSI IC circuits is shown in Figure 1-1. Unshaded blocks show the level of design representation; shaded blocks show processes in the design flow.
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Figure 4:Typical Design Flow

The design flow shown in Figure 1-1 is typically used by designers who use HDLs. In any design, specifications are written first. Specifications describe abstractly the functionality, interface, and overall architecture of the digital circuit to be designed. At this point, the architects do not need to think about how they will implement this circuit. A behavioral description is then created to analyze the design in terms of functionality, performance, compliance to standards, and other high-level issues. Behavioral descriptions are often written with HDLs.[2]
[2] New EDA tools have emerged to simulate behavioral descriptions of circuits. These tools combine the powerful concepts from HDLs and object oriented languages such as C++. These tools can be used instead of writing behavioral descriptions in Verilog HDL.
The behavioral description is manually converted to an RTL description in an HDL. The designer has to describe the data flow that will implement the desired digital circuit. From this point onward, the design process is done with the assistance of EDA tools.
Logic synthesis tools convert the RTL description to a gate-level netlist. A gate-level netlist is a description of the circuit in terms of gates and connections between them. Logic synthesis tools ensure that the gate-level netlist meets timing, area, and power specifications. The gate-level netlist is input to an Automatic Place and Route tool, which creates a layout. The layout is verified and then fabricated on a chip.
Thus, most digital design activity is concentrated on manually optimizing the RTL description of the circuit. After the RTL description is frozen, EDA tools are available to assist the designer in further processes. Designing at the RTL level has shrunk the design cycle times from years to a few months. It is also possible to do many design iterations in a short period of time.
Behavioral synthesis tools have begun to emerge recently. These tools can create RTL descriptions from a behavioral or algorithmic description of the circuit. As these tools mature, digital circuit design will become similar to high-level computer programming. Designers will simply implement the algorithm in an HDL at a very abstract level. EDA tools will help the designer convert the behavioral description to a final IC chip.
It is important to note that, although EDA tools are available to automate the processes and cut design cycle times, the designer is still the person who controls how the tool will perform. EDA tools are also susceptible to the "GIGO : Garbage In Garbage Out" phenomenon. If used improperly, EDA tools will lead to inefficient designs. Thus, the designer still needs to understand the nuances of design methodologies, using EDA tools to obtain an optimized design.
3.3.1 Importance of HDLs
HDLs have many advantages compared to traditional schematic-based design.
· Designs can be described at a very abstract level by use of HDLs. Designers can write their RTL description without choosing a specific fabrication technology. Logic synthesis tools can automatically convert the design to any fabrication technology. If a new technology emerges, designers do not need to redesign their circuit. They simply input the RTL description to the logic synthesis tool and create a new gate-level netlist, using the new fabrication technology. The logic synthesis tool will optimize the circuit in area and timing for the new technology.
· By describing designs in HDLs, functional verification of the design can be done early in the design cycle. Since designers work at the RTL level, they can optimize and modify the RTL description until it meets the desired functionality. Most design bugs are eliminated at this point. This cuts down design cycle time significantly because the probability of hitting a functional bug at a later time in the gate-level netlist or physical layout is minimized.
· Designing with HDLs is analogous to computer programming. A textual description with comments is an easier way to develop and debug circuits. This also provides a concise representation of the design, compared to gate-level schematics. Gate-level schematics are almost incomprehensible for very complex designs.
HDL-based design is here to stay.[3] With rapidly increasing complexities of digital circuits and increasingly sophisticated EDA tools, HDLs are now the dominant method for large digital designs. No digital circuit designer can afford to ignore HDL-based design.
[3] New tools and languages focused on verification have emerged in the past few years. These languages are better suited for functional verification. However, for logic design, HDLs continue as the preferred choice.




3.4 Popularity of Verilog HDL
Verilog HDL has evolved as a standard hardware description language. Verilog HDL offers many useful features
· Verilog HDL is a general-purpose hardware description language that is easy to learn and easy to use. It is similar in syntax to the C programming language. Designers with C programming experience will find it easy to learn Verilog HDL.
· Verilog HDL allows different levels of abstraction to be mixed in the same model. Thus, a designer can define a hardware model in terms of switches, gates, RTL, or behavioral code. Also, a designer needs to learn only one language for stimulus and hierarchical design.
· Most popular logic synthesis tools support Verilog HDL. This makes it the language of choice for designers.
· All fabrication vendors provide Verilog HDL libraries for postlogic synthesis simulation. Thus, designing a chip in Verilog HDL allows the widest choice of vendors.
· The Programming Language Interface (PLI) is a powerful feature that allows the user to write custom C code to interact with the internal data structures of Verilog. Designers can customize a Verilog HDL simulator to their needs with the PLI.

Trends in HDLs
The speed and complexity of digital circuits have increased rapidly. Designers have responded by designing at higher levels of abstraction. Designers have to think only in terms of functionality. EDA tools take care of the implementation details. With designer assistance, EDA tools have become sophisticated enough to achieve a close-to-optimum implementation.
The most popular trend currently is to design in HDL at an RTL level, because logic synthesis tools can create gate-level netlists from RTL level design. Behavioral synthesis allowed engineers to design directly in terms of algorithms and the behavior of the circuit, and then use EDA tools to do the translation and optimization in each phase of the design. However, behavioral synthesis did not gain widespread acceptance. Today, RTL design continues to be very popular. Verilog HDL is also being constantly enhanced to meet the needs of new verification methodologies.
Formal verification and assertion checking techniques have emerged. Formal verification applies formal mathematical techniques to verify the correctness of Verilog HDL descriptions and to establish equivalency between RTL and gate-level netlists. However, the need to describe a design in Verilog HDL will not go away. Assertion checkers allow checking to be embedded in the RTL code. This is a convenient way to do checking in the most important parts of a design.
New verification languages have also gained rapid acceptance. These languages combine the parallelism and hardware constructs from HDLs with the object oriented nature of C++. These languages also provide support for automatic stimulus creation, checking, and coverage. However, these languages do not replace Verilog HDL. They simply boost the productivity of the verification process. Verilog HDL is still needed to describe the design.
For very high-speed and timing-critical circuits like microprocessors, the gate-level netlist provided by logic synthesis tools is not optimal. In such cases, designers often mix gate-level description directly into the RTL description to achieve optimum results. This practice is opposite to the high-level design paradigm, yet it is frequently used for high-speed designs because designers need to squeeze the last bit of timing out of circuits, and EDA tools sometimes prove to be insufficient to achieve the desired results.
Another technique that is used for system-level design is a mixed bottom-up methodology where the designers use either existing Verilog HDL modules, basic building blocks, or vendor-supplied core blocks to quickly bring up their system simulation. This is done to reduce development costs and compress design schedules. For example, consider a system that has a CPU, graphics chip, I/O chip, and a system bus. The CPU designers would build the next-generation CPU themselves at an RTL level, but they would use behavioral models for the graphics chip and the I/O chip and would buy a vendor-supplied model for the system bus. Thus, the system-level simulation for the CPU could be up and running very quickly and long before the RTL descriptions for the graphics chip and the I/O chip are completed.


3.5 Hierarchical Modeling Concepts
Before we discuss the details of the Verilog language, we must first understand basic hierarchical modeling concepts in digital design. The designer must use a "good" design method efficient
Verilog HDL-based design. In this chapter, we discuss typical design methodologies and illustrate how these concepts are translated to Verilog. A digital simulation is made up of various components. We talk about the components and their interconnections.

Learning Objectives
· Understand top-down and bottom-up design methodologies for digital design.
· Explain differences between modules and module instances in Verilog.
· Describe four levels of abstraction - behavioral, data flow, gate level, and switch level - to represent the same module.
· Describe components required for the simulation of a digital design. Define a stimulus block and a design block. Explain two methods of applying stimulus.


3.6 Design Methodologies
There are two basic types of digital design methodologies: a top-down design methodology and a bottom-up design methodology. In a top-down design methodology, we define the top-level block and identify the sub-blocks necessary to build the top-level block. We further subdivide the sub-blocks until we come to leaf cells, which are the cells that cannot further be divided. Figure 2-1 shows the top-down design process.
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Figure 5:Top-down Design Methodology
bottom-up design methodology, we first identify the building blocks that are available to us. We build bigger cells, using these building blocks. These cells are then used for higher-level blocks until we build the top-level block in the design. Figure 2-2 shows the bottom-up design process.

[image: ]

Figure 6:. Bottom-up Design Methodology

Typically, a combination of top-down and bottom-up flows is used. Design architects define the specifications of the top-level block. Logic designers decide how the design should be structured by breaking up the functionality into blocks and sub-blocks. At the same time, circuit designers are designing optimized circuits for leaf-level cells. They build higher-level cells by using these leaf cells. The flow meets at an intermediate point where the switch-level circuit designers have created a library of leaf cells by using switches, and the logic level designers have designed from top-down until all modules are defined in terms of leaf cells.
To illustrate these hierarchical modeling concepts, let us consider the design of a negative edge-triggered 4-bit ripple carry counter described in Section 2.2, 4-bit Ripple Carry Counter.

4-bit Ripple Carry Counter
The ripple carry counter shown in Figure 2-3 is made up of negative edge-triggered toggle flipflops (T_FF). Each of theT_FFs can be made up from negative edge-triggered D-flipflops (D_FF) and inverters (assuming q_bar output is not available on the D_FF), as shown in Figure 2-4.
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                                                        Figure 7:4 bit ripple carry counter
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                                                                                               Figure 8:T-flipflop
                                                           

Thus, the ripple carry counter is built in a hierarchical fashion by using building blocks. The diagram for the design hierarchy is shown in Figure 2-5.
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Figure 9:. Design Hierarchy

In a top-down design methodology, we first have to specify the functionality of the ripple carry counter, which is the top-level block. Then, we implement the counter with T_FFs. We build the T_FFs from the D_FF and an additional inverter gate. Thus, we break bigger blocks into smaller building sub-blocks until we decide that we cannot break up the blocks any further. A bottom-up methodology flows in the opposite direction. We combine small building blocks and build bigger blocks; e.g., we could build D_FF from and and or gates, or we could build a custom D_FF from transistors. Thus, the bottom-up flow meets the top-down flow at the level of the D_FF.

3.7 Modules
We now relate these hierarchical modeling concepts to Verilog. Verilog provides the concept of a module. A module is the basic building block in Verilog. A module can be an element or a collection of lower-level design blocks. Typically, elements are grouped into modules to provide common functionality that is used at many places in the design. A module provides the necessary functionality to the higher-level block through its port interface (inputs and outputs), but hides the internal implementation. This allows the designer to modify module internals without affecting the rest of the design.
In Figure 2-5, ripple carry counter, T_FF, D_FF are examples of modules. In Verilog, a module is declared by the keywordmodule. A corresponding keyword endmodule must appear at the end of the module definition. Each module must have amodule_name, which is the identifier for the module, and a module_terminal_list, which describes the input and output terminals of the module.
module <module_name> (<module_terminal_list>);

...
<module internals>
...
...
endmodule
Specifically, the T-flipflop could be defined as a module as follows:
module T_FF (q, clock, reset);
.
.
<functionality of T-flipflop>
.
.
endmodule
Verilog is both a behavioral and a structural language. Internals of each module can be defined at four levels of abstraction, depending on the needs of the design. The module behaves identically with the external environment irrespective of the level of abstraction at which the module is described. The internals of the module are hidden from the environment. Thus, the level of abstraction to describe a module can be changed without any change in the environment. These levels will be studied in detail in separate chapters later in the book. The levels are defined below.
· Behavioral or algorithmic level
This is the highest level of abstraction provided by Verilog HDL. A module can be implemented in terms of the desired design algorithm without concern for the hardware implementation details. Designing at this level is very similar to C programming.
· Dataflow level
At this level, the module is designed by specifying the data flow. The designer is aware of how data flows between hardware registers and how the data is processed in the design.


· Gate level
The module is implemented in terms of logic gates and interconnections between these gates. Design at this level is similar to describing a design in terms of a gate-level logic diagram.

Switch level
This is the lowest level of abstraction provided by Verilog. A module can be implemented in terms of switches, storage nodes, and the interconnections between them. Design at this level requires knowledge of switch-level implementation details.
Verilog allows the designer to mix and match all four levels of abstractions in a design. In the digital design community, the term register transfer level (RTL) is frequently used for a Verilog description that uses a combination of behavioral and dataflow constructs and is acceptable to logic synthesis tools.
If a design contains four modules, Verilog allows each of the modules to be written at a different level of abstraction. As the design matures, most modules are replaced with gate-level implementations.
Normally, the higher the level of abstraction, the more flexible and technology-independent the design. As one goes lower toward switch-level design, the design becomes technology-dependent and inflexible. A small modification can cause a significant number of changes in the design. Consider the analogy with C programming and assembly language programming. It is easier to program in a higher-level language such as C. The program can be easily ported to any machine. However, if you design at the assembly level, the program is specific for that machine and cannot be easily ported to another machine.
Instances:
A module provides a template from which you can create actual objects. When a module is invoked, Verilog creates a unique object from the template. Each object has its own name, variables, parameters, and I/O interface. The process of creating objects from a module template is called instantiation, and the objects are called instances. In Example 2-1, the top-level block creates four instances from the T-flipflop (T_FF) template. Each T_FF instantiates a D_FF and an inverter gate. Each instance must be given a unique name. Note that // is used to denote single-line comments.

Example 2-1 Module Instantiation
// Define the top-level module called ripple carry
// counter. It instantiates 4 T-flipflops. Interconnections are
// shown in Section 2.2, 4-bit Ripple Carry Counter.
module ripple_carry_counter(q, clk, reset);

output [3:0] q; //I/O signals and vector declarations
              //will be explained later.
input clk, reset; //I/O signals will be explained later.

//Four instances of the module T_FF are created. Each has a unique
//name.Each instance is passed a set of signals. Notice, that
//each instance is a copy of the module T_FF.
T_FF tff0(q[0],clk, reset);
T_FF tff1(q[1],q[0], reset);
T_FF tff2(q[2],q[1], reset);
T_FF tff3(q[3],q[2], reset);

endmodule

// Define the module T_FF. It instantiates a D-flipflop. We assumed
// that module D-flipflop is defined elsewhere in the design. Refer
// to Figure 2-4 for interconnections.
module T_FF(q, clk, reset);

//Declarations to be explained later
output q;
input clk, reset;
wire d;

D_FF dff0(q, d, clk, reset); // Instantiate D_FF. Call it dff0.
not n1(d, q); // not gate is a Verilog primitive. Explained later.

endmodule

In Verilog, it is illegal to nest modules. One module definition cannot contain another module definition within the moduleand endmodule statements. Instead, a module definition can incorporate copies of other modules by instantiating them. It is important not to confuse module definitions and instances of a module. Module definitions simply specify how the module will work, its internals, and its interface. Modules must be instantiated for use in the design.
Example 2-2 shows an illegal module nesting where the module T_FF is defined inside the module definition of the ripple carry counter.
Example 2-2 Illegal Module Nesting
// Define the top-level module called ripple carry counter.
// It is illegal to define the module T_FF inside this module.
module ripple_carry_counter(q, clk, reset);
output [3:0] q;
input clk, reset;

   module T_FF(q, clock, reset);// ILLEGAL MODULE NESTING
   ...
   <module T_FF internals>
   ...
   endmodule // END OF ILLEGAL MODULE NESTING

endmodule


3.8 Components of a Simulation
Once a design block is completed, it must be tested. The functionality of the design block can be tested by applying stimulus and checking results. We call such a block the stimulus block. It is good practice to keep the stimulus and design blocks separate. The stimulus block can be written in Verilog. A separate language is not required to describe stimulus. The stimulus block is also commonly called a test bench. Different test benches can be used to thoroughly test the design block.
Two styles of stimulus application are possible. In the first style, the stimulus block instantiates the design block and directly drives the signals in the design block. In Figure 2-6, the stimulus block becomes the top-level block. It manipulates signals clk and reset, and it checks and displays output signal q.
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Figure 10:. Stimulus and Design Blocks Instantiated in a Dummy Top-Level Module

The second style of applying stimulus is to instantiate both the stimulus and design blocks in a top-level dummy module. The stimulus block interacts with the design block only through the interface. This style of applying stimulus is shown in Figure 2-7. The stimulus module drives the signals d_clk and d_reset, which are connected to the signals clk and reset in the design block. It also checks and displays signal c_q, which is connected to the signal q in the design block. The function of top-level block is simply to instantiate the design and stimulus blocks.

























                                                         CHAPTER 4

Introduction to XILINX 
An Introduction to XILINX 
The ISE 9.1i provides Xilinx PLD designers with  the basic design process using ISE 9.1i. In this chapter you will  understande of how to create, verify, and implement a design.
This chapterl contains the following sections:

· “Getting Started”
· “Create a New Project”
· “Create an HDL Source”
· “Design Simulation”
· “Create Timing Constraints”
· “Implement Design and Verify Constraints”
· “Reimplement Design and Verify Pin Locations”
· “Download Design to the Spartan™-3 Demo Board”

4.1.1  Getting Started

Software Requirements:-  ISE 9.1i
Hardware Requirements:-  Spartan-3 Startup Kit, containing the Spartan-3 Startup Kit Demo Board.

Starting the ISE Software
To start ISE, double-click the desktop icon,
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or start ISE from the Start menu by selecting:
· Start 
· All Programs 
· Xilinx ISE 14.7
· Project Navigator
Note: Your start-up path is set during the installation process and may differ from the one above Accessing Help
     	At any time during the tutorial, you can access online help for additional information about the ISE software and related tools.
	To open Help, do either of the following:
· Press F1 to view Help for the specific tool or function that you have selected or highlighted.
· Launch the ISE Help Contents from the Help menu. It contains information about creating and maintaining your complete design flow in ISE.
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4.1.2 Create a New Project
Create a new ISE project which will target the FPGA device on the Spartan-3 Startup Kit
demo board.

To create a new project:

1. Select File 
New Project... The New Project Wizard appears.

2. Type tutorial in the Project Name field.

3. Enter or browse to a location (directory path) for the new project. A tutorial
    subdirectory is created automatically.

4. Verify that HDL is selected from the Top-Level Source Type list.

5. Click Next to move to the device properties page

6. Fill in the properties in the table as shown below:

· Product Category: All
· Family: Spartan3
· Device: XC3S200
· Package: FT256
· Speed Grade: -4
· Top-Level Source Type: HDL
· Synthesis Tool: XST (VHDL/Verilog)
· Simulator: ISE Simulator (VHDL/Verilog)
· Preferred Language: VHDL (or Verilog)
· Verify that Enable Enhanced Design Summary is selected.

Leave the default values in the remaining fields.
When the table is complete, your project properties will look like the following:
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7. Click Next to proceed to the Create New Source window in the New Project Wizard. At the end of the next section, your new project will be complete.

4.1.3 Create an HDL Source
In this section, you will create the top-level HDL file for your design. Determine the language that you wish to use for the tutorial. Then, continue either to the “Creating a VHDL Source” section below, or skip to the “Creating a Verilog Source” section.

Creating a VHDL Source

Create a VHDL source file for the project as follows:

1. Click the New Source button in the New Project Wizard.
2. Select VHDL Module as the source type.
3. Type in the file name counter.
4. Verify that the Add to project checkbox is selected.
5. Click Next.
6. Declare the ports for the counter design by filling in the port 	information as shown below:
	[image: ]
7. Click Next, then Finish in the New Source Wizard - Summary dialog      	box to complete the new source file template.

8. Click Next, then Next, then Finish.

     The source file containing the entity/architecture pair displays in the  
     Workspace, and   
     the counter displays in the Source tab, as shown below:

[image: ]

Using Language Templates (VHDL)

The next step in creating the new source is to add the behavioral description for the
counter. To do this you will use a simple counter code example from the ISE Language

Templates and customize it for the counter design.
1. Place the cursor just below the begin statement within the counter architecture.

2. Open the Language Templates by selecting Edit 
· Language Templates…
     Note: You can tile the Language Templates and the counter file by selecting 

       Window 
· Tile
Vertically to make them both visible.

3. Using the “+” symbol, browse to the following code example:

     VHDL 
· Synthesis Constructs 
· Coding Examples 
· Counters 
· Binary 
· Up/Down Counters 
· Simple Counter

· With Simple Counter selected, select Edit 
· Use in File, or select the Use Template  
     in File toolbar button. This step copies the template into the counter source file.

5. Close the Language Templates.
4.1.4 Final Editing of the VHDL Source

1. Add the following signal declaration to handle the feedback of the counter output
    below the architecture declaration and above the first begin statement:
  signal count_int : std_logic_vector(3 downto 0) :"0000";

2. Customize the source file for the counter design by replacing the port and signal name   placeholders with the actual ones as follows:

· replace all occurrences of <clock> with CLOCK
· replace all occurrences of <count_direction> with DIRECTION
· replace all occurrences of <count> with count_int


3. Add the following line below the end process; statement:
   COUNT_OUT <= count_int;
4. Save the file by selecting File Save.

When you are finished, the counter source file will look like the following:
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
-- Uncomment the following library declaration if instantiating
-- any Xilinx primitive in this code.
--library UNISIM;
--use UNISIM.VComponents.all;
entity counter is
Port ( CLOCK : in STD_LOGIC;
DIRECTION : in STD_LOGIC;
COUNT_OUT : out STD_LOGIC_VECTOR (3 downto 0));
end counter;
architecture Behavioral of counter is
signal count_int : std_logic_vector(3 downto 0) := "0000";
begin
process (CLOCK)
begin
if CLOCK='1' and CLOCK'event then
if DIRECTION='1' then
count_int <= count_int + 1;
else
count_int <= count_int - 1;
end if;
end if;
end process;
COUNT_OUT <= count_int;
end Behavioral;

You have now created the VHDL source for the tutorial project. Skip past the Verilog
sections below, and proceed to the “Checking the Syntax of the New Counter
Module”section.
4.1.6 Checking the Syntax of the New Counter Module

When the source files are complete, check the syntax of the design to find errors and types.

  1.   Verify that Synthesis/Implementation is selected from the drop-   
        down list in the Sources window.
  2.     Select the counter design source in the Sources window to display the  related processes               Processes window.
3. Click the “+” next to the Synthesize-XST process to expand the process group.
4. Double-click the Check Syntax process.
Note: You must correct any errors found in your source files. You can check for   errors in the Console tab of the Transcript window. If you continue without  valid syntax, you will not be able to  simulate or synthesize your design.
5. Close the HDL file.

4.1.5 Design Simulation

Verifying Functionality using Behavioral Simulation

Create a test bench waveform containing input stimulus you can use to verify the
functionality of the counter module. The test bench waveform is a graphical view of a test
bench.

Create the test bench waveform as follows:

1. Select the counter HDL file in the Sources window.
2. Create a new test bench source by selecting Project New Source.
3. In the New Source Wizard, select Test Bench WaveForm as the source type, and type counter_tbw in the File Name field.
4. Click Next.
5. The Associated Source page shows that you are associating the test bench waveform
with the source file counter. Click Next.
6. The Summary page shows that the source will be added to the project, and it displays
the source directory, type and name. Click Finish.
7. You need to set the clock frequency, setup time and output delay times in the Initialize
Timing dialog box before the test bench waveform editing window opens.
The requirements for this design are the following:
· The counter must operate correctly with an input clock frequency = 25 MHz.
· The DIRECTION input will be valid 10 ns before the rising edge of CLOCK.
· The output (COUNT_OUT) must be valid 10 ns after the rising edge of CLOCK.
The design requirements correspond with the values below.
Fill in the fields in the Initialize Timing dialog box with the following information:
· Clock High Time: 20 ns.
· Clock Low Time: 20 ns.
· Input Setup Time: 10 ns.
· Output Valid Delay: 10 ns.
· Offset: 0 ns.
· Global Signals: GSR (FPGA)
Note: When GSR(FPGA) is enabled, 100 ns. is added to the Offset value automatically.
· Initial Length of Test Bench: 1500 ns.

Leave the default values in the remaining fields.

[image: ]
8. Click Finish to complete the timing initialization.
9. The blue shaded areas that precede the rising edge of the CLOCK correspond to the
      Input Setup Time in the Initialize Timing dialog box. Toggle the DIRECTION port to
      define the input stimulus for the counter design as follows:

· Click on the blue cell at approximately the 300 ns to assert DIRECTION high so that the counter will count up.
· Click on the blue cell at approximately the 900 ns to assert DIRECTION low so that the counter will count down.


Note: For more accurate alignment, you can use the Zoom In and Zoom Out toolbar buttons.
[image: ]
10. Save the waveform.
11. In the Sources window, select the Behavioral Simulation view to see 
      that the test bench waveform file is automatically added to your 
      project.
[image: ]
12. Close the test bench waveform.
4.1.7 Simulating Design Functionality

Verify that the counter design functions as you expect by performing behavior simulation as follows:

1. Verify that Behavioral Simulation and counter_tbw are selected in   
     the Sources window.

2. In the Processes tab, click the “+” to expand the Xilinx ISE Simulator 
    process and double-click the Simulate Behavioral Model process.
    The ISE Simulator opens and runs the simulation to the end of the    
    test bench.
3. To view your simulation results, select the Simulation tab and zoom 
     in on the transitions.

The simulation waveform results will look like the following:
[image: ]


Note: You can ignore any rows that start with TX.
4. Verify that the counter is counting up and down as expected.
5. Close the simulation view. If you are prompted with the following 
    message, “You have an active simulation open. Are you sure you want 
    to close it?“, click Yes to continue. You have now completed   
    simulation of your design using the ISE Simulator.












                                     

CHAPTER 5

CONCLUSION

This brief has presented a novel FFT processor whose outputs are generated in the natural order. The proposed processor can process two independent data streams simultaneously, and makes it suitable for many high-speed real-time applications. The bit reversal circuit present in prior designs is eliminated by integrating two FFT processors and the registers, which are present in the architecture are reused for bit reversal. As a result, the need of additional registers to bit reverse the outputs is avoided. Moreover, the proposed architecture provides throughput higher than the prior architectures. These attributes make the proposed FFT processor superior in sense of hardware complexity and performance.




















References:

[1] S. He and M. Torkelson, “A new approach to pipeline FFT processor,” in Proc. 10th Int. Parallel Process. Symp., 1996, pp. 766–770.

[2] Y. Chen, Y.-W. Lin, Y.-C. Tsao, and C.-Y. Lee, “A 2.4-Gsample/s DVFS FFT processor for MIMO OFDM communication systems,” IEEE J. Solid-State Circuits, vol. 43, no. 5, pp. 1260–1273, May 2008.

[3] S.-N. Tang, C.-H. Liao, and T.-Y. Chang, “An area- and energyefficient multimode FFT processor for WPAN/WLAN/WMAN systems,” IEEE J. Solid-State Circuits, vol. 47, no. 6, pp. 1419–1435, Jul. 2012.

[4] P. P. Boopal, M. Garrido, and O. Gustafsson, “A reconfigurable FFT architecture for variable-length and multi-streaming OFDM standards,” in Proc. IEEE ISCAS, May 2013, pp. 2066–2070.

[5] K.-J. Yang, S.-H. Tsai, and G. C. H. Chuang, “MDC FFT/IFFT processor with variable length for MIMO-OFDM systems,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 21, no. 4, pp. 720–731, Apr. 2013.

[6] Y.-N. Chang, “An efficient VLSI architecture for normal I/O order pipeline FFT design,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 55, no. 12, pp. 1234–1238, Dec. 2008.





image3.png

image4.png

image5.png

image6.png

image7.png

image8.png

image9.png

image10.png

image11.png

image12.png

image13.png

image14.png

image15.png

image16.png

image17.png

image18.png

image19.png

image20.png

image21.png

image22.png

image23.png

image24.png

image1.jpeg

image2.jpeg

