Course N	Io. Course Name	L-T-P - Credits	Year of Introduction
AU202	ADVANCED THERMODYNAMICS	3-1-0-4	2016
Prerequis	ite : Nil		I
Course O	bjectives		
• To	impart knowledge to the students thermodynami	c concepts and differe	ent power cycles.
• To	make the students to solve numerical problems	based on laws of the	rmodynamics and
dif	ferent power cycles.	ALAM	
Svllabus	TECHNIQUO	TTO AT	
Concepts	of thermodynamic systems, Thermometry, first law	w of thermodynamics,	first law for open
and closed	l systems, second law of thermodynamics, concep	ot of entropy, Availab	oility, third law of
thermodyn	amics, Thermodynamic relations, Properties of pure	e substances, Different	power cycles.
Expecte	d outcome.		
After com	pleting this course the students will be able to	1	
1. ex	plain thermodynamic concepts and different power	er cycles	
11. SO.	ve numerical problems based on laws of thermod	ynamics and differen	t power cycles.
1 D K Noc	DK: Engineering Thermodynamics Toto McGroyy H	ill Dublishing Compo	
IT K Nag	Delbi 2008	in Fuonsning Compa	lly
2. Thermo	<i>l Engineering</i> by R K Raiput Laxmi publications	Ltd	
Data Bo	ok (Approved for use in the examination):	Liu.	
Referen	ces:	CIN	
		J	
1. Th	<mark>ermodyn</mark> amics an Engineering Approach by Yun	us A Cengel& Micha	el A Boles
2. En	gineering Thermodynamics by R.K. Rajput.		
3. J.	F. Lee and FW Sears, Engineering Thermodynam	ics, Addison-Wesleg	Publishing
Co	ompany, London, 1962.		
4. M	A.chuthan, Engineering Thermodynamics, Prenti	ce Hall of India Priva	te Ltd,
5. Ne	w Delhi 2002.		
6. J.H	P. Holma <mark>n, <i>Thermodynam</i>ic</mark> s, McGraw Hill book	company New York,	1988.
7. M	ark W. Ze <mark>mansky, <i>Heat and Thermodynamic</i>, Mc</mark>	<mark>Graw Hill, Ne</mark> w Delh	i, 2001.
8. Ro	oy T, <i>Basic <mark>Engineering</mark> Thermodynamics</i> , Tata N	l <mark>cGraw Hill P</mark> ublishir	ng Company Ltd.
Ne	w Delhi 1989.		
9. Th	ermal Engineering by Mahesh M Rathore		
	Course Plan	34	
Module	Contents	Hours	Sem.ExamMarks
	Fundamentals concepts-scope and limita	tions of 8	
	thermodynamics. Thermodynamic systems-	different	
Ι	types of systems – macroscopic and microscop	ic analysis	
	- continuum - Properties - state -	processes.	
	ideal gas -Real gas relations		15%
	Laws of thermodynamics- Zeroth law of thermo	odynamics 9	1570
П	- Thermal equilibrium - Concept of terr	perature –	
	Thermometry – Temperature scales. Work and h	eat – First	15%

	law of thermodynamics- Concept of energy - First law for		
	closed and open systems – Specific heats – internal		
	energy and enthalpy – Steady flow energy equations -		
	Joule Thompson effect.		
	FIRST INTERNAL EXAMINATION		
	Second law of thermodynamics- Various statements and	9	15%
	their equivalence_ Reversible process and reversible		
	cycles- Carnot cycles- Corollaries of the second law.		
III	Clausius inequality- Concept of entropy – Calculation of	Not	
	change in entropy in various thermodynamic processes –	IVI.	
	Reversibility and irreversibility – Available and	A. 1	
	unavailable energy – Third law of thermodynamics.	A	
	Thermodynamic relations – Combined first and second law	8	15%
IV	equations – Hemholtz and Gibbs functions – Maxwell		
	relations- Equations for specific heats, internal energy,	_	
	enthalpy and entropy – Clausius-Clapeyron equations -		
	applications of thermodynamic relations.		
	SECOND INTERNAL EXAMINATION		
	Properties of pure substances – PVT, PT and TS diagrams,	11	20%
	Compressibility factor – Law of corresponding states,		
V	Mollier diagrams- Mixture of gases and vapours- mixture		
•	of ideal gases – Dalton's law – Gibbs law- Thermodynamic		
	properties of mixtures-Numerical problems using steam		
	tables.		
	Different power cycles- Brayton cycle, reversed Brayton	11	20%
VI	cycle, Lenoir cycle, Stirling cycle, Atkinson cycle, Rankine		
	cycle- Numerical problems based on power cycles.		
	END SEMESTER EXAM		

Total marks: 100, Time: 3 hours The question paper shall consist of three parts Part A

Part A

4 questions uniformly covering modules I and II. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks =30 marks)

Part B

2014

4 questions uniformly covering modules III and IV. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part C

6 questions uniformly covering modules V and VI. Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

Note: In all parts, each question can have a maximum of four sub questions, if needed.

Course No.	Course Name	L-T-P - Credits	Year of Introduction
AU204	CI ENGINES &	4-0-0-4	2016
	COMBUSTION		
Course Object	ctives		
To imp	part the basic concepts of CI Engine and	Combustion	
• To kno	w about CI engine emissions and their t	reatments,	
To diff	ferentiate ideal and actual cycles	**** * * *	100
• To und	lerstand FI systems in CI engines	KALAN	N.
Syllabus	ALL ADE OF	IN IL I	A. T
Diesel fuels,	Properties and qualities - Combustion	in CI engines, P-θ di	agram - Air motion-
Squish, tumb	e - Fuel supply system in diesel engi	nes - Diesel injection	pump types - C-AV
Bosch pump,	Modem distributor type pumps - Dies	el filters - Advanced f	uel injection system-
Unit pump &	injector- Common Rail (CR) Fuel In	njection Systems - Se	nsors in CI engine -
Pollutants in	engines. NOx, CO, unburned hydroca	arbons - Exhaust gas	treatment Catalytic
converter - S	the charging - cold starting devices	g in S.I and C.I engine	es - Turbo charging -
Expected on	tcome		
The stude	nts will be able to		
i. To ext	blain CI Engine and Combustion.		
ii. To dif	ferentiate and analyse ideal and actual cy	vcles	
iii. To d <mark>i</mark> a	gnose FI systems in CI engines		
Text Book:		-CIN	
1. M. L.	Mathur, R. P. Sharma - Internal Combus	tion Engines, Dhanpatl	Rai Publications
2. R.K. R	ajput, Internal Combustion Engines, La	xmi Publications.	
3. V Gar	nesan, Internal Combustion Engine Tat	ta McGraw Hill Publis	shing Company Ltd.,
New D	Delhi 2006.		
Defenences			
1 Newto	n K Steeds W and Carrett T K Motor	Vahiela Butterworth	Jeinemann I td
1. Newto	m H Crouse Deneld L Anglin Automot	ive Mechanics Tete N	
2. Willia Publis	hers	ive Mechanics, Tata N	icoraw-mili
3. Joseph	Heitner- Automobile mechanics, CBS	Publishers, New Delhi	
4. A.W.J	udge, Modern petrol engine, Chapman a	nd Hall, London	
5. P. M. I	Heldt – High speed diesel engines. Chill	on Co. New York.	
6 Taylor	I C Engines MIT Press England		
7 Lichty	I C Engines McGraw Hill Publishing	Co	
8 Smith	& Stinson Fuels & Combustion McGr	aw-Hill Publishing Co.	
0. John I	P Haywood Internal Combustion Engi	aw-Thin I ublishing Co.	Grow Hill Dublishing
S. John I Compa	any	ne Fundamentais, wice	
10. Obert	E F,Internal Combustion Engine and air	Pollution McGraw Hil	l book company New
Y Ork.			
11. Sharm Delhi	a S.P, Fuels and Combustion, Tata Mo	Graw Hill Publishing	Company Ltd., New
12. Heinz	Heisler, Advanced Engine Technology,	Society of Automotive	Engineers Inc

	Course Plan		
Module	Contents	Hours	Sem.ExamMarks
	Diesel fuels, Properties and qualities, Cetane number, alternative fuels for CI engines		
Ι	Combustion in CI engines, P-θ diagram – parameters affecting Ignition delay, uncontrolled combustion, diesel knock - controlling methods. Diesel knock, comparison with SI knock and control. Air motion- Squish, tumble, swirl motions. Different types combustion chambers in CI engines.	9	
	I LUI UNULUUIL	1 Mar	15%
Π	 Fuel supply system in diesel engines: Requirements of diesel injection system, Components of diesel injection system, Diesel filters, fuel feed pump, hand pump, heavy duty air filters, Diesel injection pump types - simple and multiple unit pump, C-AV Bosch pump, Modem distributor type pumps, injection nozzles and types of injectors, Pump-Line-Injector (PLI) Systems 	8	
	FIRST INTERNAL EXAMINATION	_	15%
	Electronic Unit Injectors (EUI) – Advanced fuel injection		15%
III	system- Unit pump & injectors (DOI) - Navaneou ider injection Injection Systems - Electronic Diesel Control (EDC) - overview & Diagnostics. Sensors in CL engine fuel injection systems – control of fuel injection – Actuators in CRDI systems.	8	1370
	Thermodynamics of combustion. Combustion reaction of common fuels. Exhaust gas composition. Testing of IC engines - Indicated power - Brake Power - Volumetric efficiency - Heat balance test - Morse test.	1	15%
IV	Gas Exchange Processes - Valve Flow and Volumetric Efficiency - Valve Timing - Dynamic Behavior of Valve Gear.	9	
	Flue gas analysis using ORSAT apparatus – liquid fuel, gaseous fuel – combustion equations – problems		
	SECOND INTERNAL EAAMINATION		20%
V	Pollutants in engines. NOx, CO, unburned hydrocarbons, smoke and particulate. Sources, causes and measurement of exhaust emission, Non exhaust emissions and control methods, Emission norms	11	2070
	Exhaust gas treatment Catalytic converter – Thermal reaction -Particulate trap. Flue gas analysis. Air fuel ratio from exhaust gas composition. Numerical problems		
VI	Supercharging: Introduction, Objectives of supercharging, thermodynamic cycle, effects of supercharging in S.I and C.I	11	20%

engines, performance of the supercharged engine, supercharging limits, and methods of supercharging, superchargers.		
Turbo charging - methods of turbo charging and its advantages, limitations of turbo charging. Governors (mechanical, pneumatic and hydraulic governors), cold starting devices.		
	İ	

END SEMESTER EXAM

Question Paper Pattern

Total marks: 100, Time: 3 hours The question paper shall consist of three parts

Part A

4 questions uniformly covering modules I and II. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part B

4 questions uniformly covering modules III and IV. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part C

6 questions uniformly covering modules V and VI. Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

Note: In all parts, each question can have a maximum of four sub questions, if needed.

Course N	o. Course Name	L-T-P - Credits	1	Year of
AU206	AUTO TRANSMISSION	3-0-0-3		2016
Course O	bjectives			
• To	impart basic knowledge in automotive transm	nission.		
• To	understand the construction and principle of	f operation of vari	ous type	es of mechanical
tra	nsmission components, hydrodynamic devi	ces, hydrostatic	devices	and automatic
tra	nsmission system	1. 7 (a. 11) 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.		
• To	design clutch and gearbox.	KATA.	NA	
Syllabus	ALL ADDUL	MALA	TAT	
Problems	on performance of automobile -Determination	on of gear ratios	for vel	hicles. Different
types of g	earboxes -Fluid coupling-Hydrodynamic Tore	que converter -Con	nstructio	on and operation
of Ford -	- T-model gearbox, Wilson Gear box and	l electromagnetic	transm	ission-Need for
automatic	transmission, Principle of operation -Hydros	static drive -Electi	nc drive	e-Comparison of
hydrostati	c drive with hydrodynamic drive-Ward Leona	rd Control system	_	
A ftor this	i ouicome.	the design of clut	ahas an	l gaar boxag
construct	ion of the transmission components, various t	vnes of transmissio	on syste	n gear boxes,
Text Boo	bk :	ypes of transmissio	JII Syste	1115
1. 3. Newt	on and Steeds – "Motor Vehicle"- Illiffee Pub	lisher- 2000.		
Reference	e <mark>s:</mark>			
1. Design	Practices, passenger Car Automotive Transmi	ssions- SAE Hand	book- 1	994.
2. Crouse	, W.H., Anglin, D.L., Automotive Transr	nission and Pow	er Trai	ns construction,
McGraw H	Hill, 1992.	IS IN		
3. Heldt,	P.M., Torque converters, Chilton Book Co., 19	992.		
4. Judge, A	A.W., Modern Transmission systems, Chapma	n and Hall Ltd., 19	990.	
5 Heinz H	leisler, Modern Vehicle Technology			
	Course Pl	an	11	
Module	Contents		Hours	Sem.ExamMarks
	Problems on performance of automobile	e - such as	6	
	resistance to motion, tractive effort, engine	speed, engine		
Ι	power and acceleration. Requirement of	transmission		
	system, Different types of clutches	s, principle,		
	Construction and torque capacity.	JA V		15%
	Determination of gear ratios for vehicles. D	ifferent types	7	
П	of gearboxes such as Sliding mesh gearb	ox, Constant		
11	mesh gearbox and Synchromesh gearbox,	gear shifting		
	mechanisms in each.			15%
	FIRST INTERNAL EXA	MINATION		
Ш	Construction and operation of Ford - T-mode	el gearbox,	6	15%
	Wilson Gear box and electromagnetic transm	ission.		
	Fluid coupling - Principle of operation, Cons	tructional	_	15%
	details, Torque capacity, Performance charac	teristics and	7	
IV	Reduction of drag torque. Hydrodynamic Tor	rque converter		
	- Principle of operation, Constructional detail	is and		
	Performance characteristics. Multistage torqu	e converters.		

	Polyphase torque converters. Converter coupling			
	SECOND INTERNAL EXAMINATION			
V	Need for automatic transmission, Principle of operation.	8	20%	
	Hydraulic control system for automatic transmission.			
	Chevrolet "Turboglide" Transmission, Continuously			
	Variable Transmission (CVT) – Types – Operations.			
	Hydrostatic drive - Various types of hydrostatic systems,	8	20%	
	Principles of Hydrostatic drive system. Advantages and			
	limitations. Comparison of hydrostatic drive with hydrodynamic	No.A.		
VI	drive, Construction and Working of typical Janny hydrostatic	A (NO)		
	drive. Electric drive - Principle of operation of Early and	2		
	Modified Ward Leonard Control system, Advantages &	A		
	limitations.	1 Star		
END SEMESTED EVAM				

Total marks: 100, Time: 3 hours The question paper shall consist of three parts

Part A

4 questions uniformly covering modules I and II. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part B

4 questions uniformly covering modules III and IV. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part C

6 questions uniformly covering modules V and VI. Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

Note: In all parts, each question can have a maximum of four sub questions, if needed.

2014

Course co	de Course Name	L-T-P - Credits		Year of
AU208	COMPUTER PROGRAMMING	3-0-0-3		2016
Prerequis	ite : Nil			
Course O	bjectives			
• To	impart knowledge in programming using C	language		
• To	give an overview of the use of C program in	n Automotive industr	у	
Syllabus	ADI ARINII	KALA.	NA.	
Microcont	roller modules in Automobile- C in	Automotive industr	y; Intr	oduction to C
programm	ing- Data types – keywords – operator	s; Arrays- Matrix	operati	on – Structure;
Functions	– Recursion – Macros; Pointers – Memory	allocation – storage	class; I	Files– transfer of
data in blo	cks; Introduction to MATLAB; Steps for so	ftware development;	MISRA	A C standard.
Expecte	l outcome.			
After this	s course students will be able to do simple pi	ograms in C languag	ge and	
Tamiliar	with the interface.			
1 Davier	DK:			
1. Dryon .	S.Gottiffed, Programming with C Language.		_	
1. Ba	aguruswamy Programming in ANSI C			
2. B.	W. Kernigham & Dennis M Ritchie, C program	ning language.		
3. De	itel, How to Program C	0 0 0		
	Course	Plan		
Module	Contents	F	Hours	Sem.ExamMarks
	Microcontroller modules in Automobile;	Microcontroller	7	
	programming – high level language, asse	mbly language		
Ι	and machine language; Compiler, a	ssembler and		
	interpreter; Integrated development envi	ronment; Chip		
	burning; Use of C in Automotive industry.		_	15%
	Introduction to C programming - Data typ	bes; Keywords,	7	
	Constants and Variables; Escape Sequence	es; Various I/O		
II	functions; Header files; Type casting; Var	ious operators;		
	Precedence of operators; Branching stater	nents; Looping		
	statements; Nested loops; break and continu	ue instructions.		15%
	FIRST INTERNAL EX	AMINATION		
	Arrays; One dimensional arrays; Selection	sorting; Binary	7	15%
	searching; Various string handlin	ng functions;		
111	Multidimensional Arrays; Matrix Operation	tions (Addition,		
	and Union: Array of Structures	unings; Structure		
	Functions: Call by value and call by rat	ference method:	7	15%
	Passing One Dimensional and Multidimen	sional Arrays to	,	1370
IV	a Function: Matrix operations using funct	ions: Recursion:		
- '	Factorial and Fibonacci series using	recursive calls;		
	Macros; Pre-processor directives; Scope of	variables.		
	SECOND INTERNAL E	XAMINATION		
	Pointers; Pointer to an array; Pointer to a	structure; Array	7	20%
V	of pointers; Pointer to a pointer; Dy	namic memory		
	allocation; Reallocation of memory; S	Self Referential		

	structure; Stack and heap; Storage class.			
VI	Files; Reading, Writing, Appending and rewriting of text and binary files; Transfer of data in blocks, Moving of file pointer in a file; Introduction to MATLAB; Steps for software development: MISRA C standard	7	20%	
END SEMESTER EXAM				

Total marks: 100, Time: 3 hours The question paper shall consist of three parts

Part A

4 questions uniformly covering modules I and II. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part B

4 questions uniformly covering modules III and IV. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part C

6 questions uniformly covering modules V and VI. Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

Note: In all parts, each question can have a maximum of four sub questions, if needed.

Course code	Course Name	L-T-P - Credits	Year of
AU232	COMPUTER PROGRAMMINGLAB	0-0-3-1	2016
Prerequisite:	AU208 Computer programming		
Course Object	tives		
To prov	vide experience in programming with C lang	uage	
 To give 	e exposure to computer softwares like MATI	LAB.	
• To do p and file	programming in C covering control structure	es functions, arrays, st	ructures, pointers
List of Exercis	ses/Experiments :	ICAL	
1. Checkin	ng leap year	TV	
2. Finding	g sum of digits and reverse of a number		
3. Genera	ting Prime numbers, Fibonacci numbers and	Armstrong numbers	
4. Sine an	d Cosine series generation		
5. Countin	ng characters, lines and words		
6. Linear	search		
7. Sorting	of numbers and strings		
8. Matrix	addition, transpose and multiplication		
9. Program	ns using structure and union		
10. Prograf	ns using requiring calls	CIN	
11. Program	ns using recursive cans	J .I.	
13 Program	ns using nointers		
14. Matrix	operation using pointers		
15. Implem	nentation of dynamic memory allocation		
16. Probler	ns related to file reading, writing and append	ling	
17. Transfe	er of data in blocks		
18. Familia	arization of MATLAB tool boxes		
Expected out	tcome.	1	
After this cou	urse students will be able to do simple progr	<mark>ams in C</mark> language an	d will be familiar
with the inter	face		
Tort Dooly			

Text Book: Bryon S. Gottfried, *Programming with C Language*.

Course code	Course Name	L-T-P - Credits	Year of	
			Introduction	
AU234	VEHICLE SYSTEMS LAB	0-0-3-1	2016	
Prerequisite :	Nil			
Course Object	ives			
To study	v about hand tools, special purpose tools, and the	heir uses.		
• To famil	liarize with various systems and components o	f an automobile.		
• To know	w about writing technical specifications an	d description of all typ	es of chassis and	
transmis	sion components of automobiles, including b	ody and interiors		
List of Exercis	es/Experiments (Minimum 12 exercises/	experiments are mand	latory)	
1. Servio	cing of clutch assembly, checking the sprin	g tension of coil spring	s in spring tester.	
2. Disma	antling of gear box, inspecting components	s, servicing, checking th	e gear ratios.	
3. Disma	antling of differential assembly, servicing	, backlash adjustments	, check for drive	
axis ra	atio.	A A	, 	
4. Servio	cing of A. C. mechanical fuel pump and tes	sting the pump.	14	
5. Servio	cing of Carburetor, Study Various Circuits	on it, tuning of carburet	or.	
6. Servio	ing master and wheel cylinders in hydraul	ic brake system & bleed	ling of brakes.	
7. Valve	timing setting including valve clearance a	djustment.		
8. Servio	cing of steering gear box, checking for end	play in shafts.		
9. Overh	auling of a complete strut type suspension	system.		
10. Disma	antle and assemble C.V joint. Also examin	e a slip joint. U.J cross	in propeller shaft.	
11. Com	ression test of petrol and diesel engine.	r J , , , , , , , , , , , , , , , , , ,	I II I I I I I I	
12. Disas	sembling cylinder head, decarbonizing, Va	lve Seat Grinding		
13. Disas	sembling of engine: inspection of engine	components, servicing	g of components,	
measu	rement of dimensions of different compo	onents of engine, comp	are with standard	
specif	ications, piston ring setting, assembling us	ing special tools.		
14. Rectif	ying the troubles in ignition system, adj	usting spark plug and	C. B. Point gap,	
check	ing ignition timing.		017	
15. Cyline	der reconditioning: Checking the cylinder	bore, setting the tool, re	-boring operation	
using	vertical or portable cylinder reboring macl	nine.		
16. Tyre	removing, inspection, check for cuts, but	lges and excessive trea	d wear, resetting	
using	pneumatic tyre changer & Wheel balancir	g: Balancing of wheels	by computerized	
wheel	balancing machine.			
17. Whee	el alignment: Checking the camber, caster	, king pin inclination, t	oe in and toe out	
with c	computerized wheel alignment machine.			
18. F. I. I	P Calibration and phasing: Setting the ar	ngle of fuel delivery, c	alibration of fuel	
quant	ity by FIP calibrating machine.			
19. Brake	drum re-conditioning: Brake drum ski	mming after leveling	machine, ovality	
measu	rement and setting the tool.		•	
20. Testin	ng of Two wheeled vehicles on chassis dyn	amometer		
Expected out	come.			
After this cours	se the student will be able to			
i. handle a	any maintenance issue in a vehicle			
ii. identify the troubles of the vehicles from the symptoms shown.				
Text Book:				
1. Boyce I	Dwiggins – Automobile Repair guide, The	odor Audel and Co., Ind	liana – 1978.	
2. A. W. J	udge – Maintenance of high speed diesel e	ngine, Chapmann Hall	Ltd.	
3. A. W	Judge – Motor vehicle engine servicing 3	^{3rd edition, Pitman pape}	er mark, London,	
1969.				
4. Vehicle	service manuals and reputed manufacture	rs.		

Course	Course Name	L-T-P – Credits	Y	ear of
AU302	AUTOMOTIVE ELECTRICAL AND	3-0-0-3		2016
120002	ELECTRONICS		-	
Prerequis	ite : Nil			
Course O	ojectives			
• To	impart knowledge on the principles of operation and cons	tructional deta	ails of	various
Au	tomotive Electrical and Electronic Systems			
Syllabus Principle of motor-Batt Instrument system ove	of lead acid battery & constructional details-Charging sy ery coil and Magneto ignition system-Electronically assis ation-Sensors and applications in Automobile-Actuate erview-Common rail direct injection, Gasoline direct inject	vstem-Require ted ignition sy ors-Electronic ion, Supercriti	ment stem- fuel cal inj	of starter Lighting- injection ection.
Expected	outcome.	1		
• The var Chasen	e students will become aware of the principles of operation ious Automotive Electrical and Electronic Systems like arging System, Ignition System, Lighting System and sors.	and construct Batteries, St Dashboard In	tional arting strum	details of System, ents and
Text Boo	k:			
1. To:	n Denton, "Automobile Electrical and Electronic Systems'	', Elsevier Bu	t <mark>t</mark> erwo	orth-
He	inemann, 2004			
2. Kh	oli .P.L. Automotive Electrical Equipment, Tata McGraw-	Hill Co Ltd		
Referenc	es	20	12	
I. A.	Santini, Automotive Electricity and Electronics, Cengage	Learning, 20	13	
2. Ko 3 W	illiam B Ribbens Norman P Mansour Underst	anding autor	notive	
ele	ectronics, Newnes, 2003	unung uutor	1101110	
4. Jin	n Horner, Automotive Electrical HandBook, Penguin, 198	б		
5. Ba	arry Hollembeak, Automotive Electricity & Electronics,	Cengage Lea	rning,	
20	10			
 	Course Plan			G
Module	Contents	н	ours	Sem. Exam Marks
I	Principle of lead acid battery & constructional details, E temperature on electrolyte, Capacity Rating, Battery construction methods, Battery tests. Developments in storage: Nicket hydride battery, Lithium ion battery, Fuel cells, capacitors.	ffect of harging l metal Ultra	7	15%
	Charging system: Working and constructional deta	ails of		
	Alternators (single and three phase), Rectification,	voltage		
тт	regulation, current regulation, Charging circuit for 3	phase	7	150/
11	Starting system: Requirement of starter motor: Starter	Motor	1	13%
	types, construction and characteristics. Starter drive mech	anisms.		
	Starting circuit, Starter Switches.			
FIRST INTERNAL EXAMINATION				

ш	Battery coil and Magneto ignition system, Centrifugal and Vacuum advance mechanisms, Spark plugs, constructional details and types. Electronically assisted ignition system; Non-contact triggering devices - Fully electronic ignition System, Capacitive Discharge Ignition, Distributor-less ignition, Programmed ignition.	7	15%
IV	Lighting: Types of headlights, headlight reflectors, headlight lenses, indicator lamp details, lighting circuit, projector headlights; Horn and wiper mechanisms. Instrumentation: Speedometer, Fuel Level Indicator, Oil Pressure and Coolant Temperature Indicators, Display devices – LED, LCD,VFD.	7	15%
	SECOND INTERNAL EXAMINATION		
V	Sensors and applications in Automobile: Pressure sensors, Temperature sensors, Position sensors, Lambda sensor, Air flow sensor, Wheel speed sensor, Knock sensor, Optical sensors. Actuators: Solenoids, Stepper motors, Relays, Piezoelectric.	7	20%
VI	Electronic fuel injection system overview; D jetronic, K jetronic and L jetronic fuel injection; Injections schemes–Single point, Multi point, Sequential, Direct injection. Common rail direct injection, Gasoline direct injection, Supercritical injection.	7	20%

END SEMESTER EXAM

Question Paper Pattern

Maximum marks: 100

Time: 3 hours

The question paper shall consist of three parts

Part A

4 questions uniformly covering modules I and II. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part B

4 questions uniformly covering modules III and IV. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part C

6 questions uniformly covering modules V and VI. Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

Note: In all parts, each question can have a maximum of four sub questions, if needed

Course	Course Name	L-T-P –	Yea	r of		
code		Credits	Introd	uction		
AU307	VEHICLE BODY ENGINEERING	3-0-0-3	20	16		
Prerequis	site : Nil					
Course C	Course Objectives					
• To	• To impart knowledge on the design of vehicle body to give maximum comfort for the					
pa	ssengers					
• 10	o discuss the methods of stream lining vehicle body to min	imize drag				
Syllabus Classifica vehicle be distributio	tion of coach work types, vehicle aerodynamics, vehi ody design terms, vehicle ergonomics, body structure typ on in vehicles.	cle body de es, vehicle st	sign para tability, a	meters, nd load		
Expecte • Th an	d outcome . The students will be able to do vehicle body design giving main d producing minimum drag.	aximum pass	enger con	nfort		
Text Bo	ok:					
1. Gi	les J Pawlowski, Vehicle body engineering Business books	s limited, 198	19			
2. Sy	dney F Page, "Body Engineering" Chapman & Hall Ltd, J	London, 1956)			
 Pope, "Wind tunnel testing", John Wiley & Sons, 2nd edition, New York, 1974 Braithwaite, J.B., Vehicle Body building and drawing, Heinemann Educational Books Ltd., London 1977 Dieler Anselm., The passenger car body, SAE International, 2000 Giles, G.J., Body construction and design, Illiffe Books Butterworth & Co., 1971. John Fenton, "Vehicle body layout and analysis", Mechanical Engg. Publication ltd, London. Paul Browne – Auto care manual. Redesign of bus bodies – Part 1 and Part 2 C. I. R. T., Pune. 				ks Ltd.,		
	Course Plan		N			
Module	Contents		Hours	Sem. Exam Marks		
I	Classification of coachwork type: styling forms, coach and bus layout of cars, buses and coach with different seating and loadi commercial vehicle types, Vans and Pickups. Terms used in bo construction - Angle of approach, Angle of departure, Ground Cross bearers, Floor longitudes, posts, seat rail, waist rail, car stick, Roof longitude, Rub rail, skirt rail, truss panel, wheel arc wheel arch, post diagonals, gussets. Basic dimension: Regulations as per ARAI, driver's seat, passe visibility.	body style, ng capacity, ody building d clearance, nt rail, Roof ch structure, engers seat,	7	15%		
Π	Aerodynamics: Basics, Vehicle drag and types, Various types and moments, effects of forces and moments, various body op techniques for minimum drag, Principle of wind tunnel techno visualization techniques, tests with scale models, aerodynamic heavy vehicles Interior Ergonomics: Introduction, ergonomi design, Seating dimensions ,seat comfort, suspension seats, s seating, back passion reducers, dash board instruments, displays, commercial vehicle cabin ergonomics, mechanica layout, goods vehicle layout.	s of forces otimization blogy, flow c study for ics system split frame electronic d package	7	15%		

	FIRST INTERNAL EXAMINATION			
ш	Vehicle Body Materials: Aluminium alloys, Steel, alloy steels, plastics, Metal matrix composites, structural timbers - properties, glass reinforced plastics and high strength composites, thermoplastics, ABS and styrenes, load bearing plastics, semi rigid PUR foams and sandwich panel construction. Paints adhesives and their properties, corrosion and their prevention	7	15%	
IV	Load distribution: Type of body structures, Vehicle body stress analysis, vehicle weight distribution, Calculation for static, symmetrical, longitudinal & side loads, stress analysis of bus body structure under bending and torsion. Vehicle Stability: Introduction, Longitudinal, lateral stability, vehicle on a curvilinear path, critical speed for toppling and skidding. Effect of operating factors on lateral stability, steering geometry and stabilization of steerable wheels, mass distribution and engine location on stability	7	15%	
SECOND INTERNAL EXAMINATION				
V	Noise and vibration: Noise characteristics, Sources of noise, noise level measurement techniques, Body structural vibrations, chassis bearing vibration, designing against fatigue, methods of noise suppression Safety: Impact protection basics, Physics of impact between deformable bodies, Design for crash worthiness, occupant and cargo restraint, passive restraint systems, side impact analysis, bumper system, energy absorbent foams, laws of mechanisms applied to safety.	7	20%	
VI	Introduction to CFD technology, fluidic design considerations, effect of air dams on front bumpers, effect of projected accessories on body, wind tunnel testing of car body, parameters considered for wind tunnel testing, introduction to software simulation of car body structures. Visibility, regulations, drivers visibility, methods of improving visibility, Window winding and seat adjustment mechanisms	7	20%	

END SEMESTER EXAM

Question Paper Pattern

Estri

Maximum marks: 100

Time: 3 hours

The question paper shall consist of three parts

Part A

4 questions uniformly covering modules I and II. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part B

4 questions uniformly covering modules III and IV. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part C

6 questions uniformly covering modules V and VI. Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

Course	Course Name	L-T-P -	Year of		
code		Credits	Introduction		
AU332	AUTO ELECTRICAL & ELECTRONICS LAB	0-0-3-1	2016		
Prerequisi	te : AU302 Automotive electrical and electronics				
Course Ob	jectives				
• To familiarize the design and construction of various automotive electrical					
	systems.				
List of Exe	rcises/Experiments : (Minimum 12 experiments are mar	ndatory)	6		
<i>Testing of t</i>	patteries	AN	1		
1. Hyc	rometer test with temperature correction	- a 1			
2. 1100	vy load test and open vonage test	(A I			
Familiariza	ution of charging system	21 11			
3. Fan	niliarizing different stator and rotor types, analyzing AC o	utput wavefo	orm		
4. Sin	gle phase rectifiers and three phase bridge rectifier				
5. Tes	sting of regulators and cut out relays				
6. Con	structing a working model of charging system				
Familiariza	ation of starting system				
7. Spe	ed and torque characteristics of DC motors				
8. Tes	ting different starter drive mechanisms				
9. Cor	istructing a working model of starting system				
Familiariza	ation of ignition system				
10. Ass	embling of battery/coil ignition system				
11. Ass	embling of magneto ignition system				
12. Cor	structing a working model of programmed ignition system	n with elect	ronic triggering		
13. Des	ign and construct a working model of lighting circuit with	n component	s given		
14. Des	ign and construct a working model of wiper system with	components .	given		
15. Der	nonstration of dash board panel instruments and controls		16		
16. Des	ign and construct a working model of power window syst	em with con	nponents given		
17. Des	ign and construct a working model of power steering with	n component	s given		
	Latu,				
Expected	outcome.				
i i i i i i i i i i i i i i i i i i i	design and construct various automotive electrical system	c			
ii.	do fault finding and rectification of automotive electrical	systems.			
List of Eau	ipments	systems.			
• Bat	tery hydrometer, Voltmeter/ Multimeter				
• Elec	ctronics components for rectifier circuit, Alternator, Dy	namo, Auto	motive regulator		
and	cut out relays, Digital Storage Oscilloscope		_		
• DC	motors, Starter drive mechanisms				
• Bat	tery ignition system, Magneto ignition system, Microco	ontroller, Ser	nsors for ignition		
timi	ng (CPS, Camshaft sensor, MAP, MAF, Temperature sen	nsor etc.)			
• Aut	omotive Lighting system				
• Das	hboard module				
• Pow	ver stoering system				
• Pow	er steering system				

Course	Course Name	L-T-P –	Y Inte	ear of
AU361	ALTERNATIVE FUELS AND ENERGY	3-0-0-3	Inu	2016
neeur	SOURCES	0000		-010
Prerequis	ite : Nil			
Course O	bjectives			
• To	impart the basic concepts of energy and its sources.			
• To	develop a clear understanding about the alternative fuels for	I.C engines	8.	
Syllabus	API ARINII KAI	AN		
Introducti	on- Types of energy sources, Alcohols for SI and CI Engir	nes- Vegeta	ble oil	as diesel
fuels, Hyd	rogen energy & Fuel Cells, CNG- LNG- Biogas- Wind Ener	gy, Solar po	ower- C	Collection
and storag	e of solar energy, Electric vehicles- Design considerations-	limitation	s- opp	ortunities
for improv	rement	1		
Expected	l outcome.			
i.	The students will understand the energy conversion, u	itilization	and sto	brage for
	renewable technologies.			
11.	The students will be familiar with the potential of using ren	ewable ene	rgy tecl	anologies
	as a complement to the extent possible, replacement for con the possibility of combining renewable and non renewable	iventional i	toohno	logics in
	hybrid systems	Jie ellergy	lecinio	iogies in
iii.	To understand the environmental aspects of energy usage ar	nd conversion	on	
Text Bo				
1. Jac 2 M	ex Erjavec, Alternative fuels, Cengage publications			
2. IVI	unur & Sharma, IC engines, Dhanpat Rai publications			
Referen	ces:			
1. T.	K. Garrett, Automotive fuels system, SAE INC, Warrendale,	1 <mark>9</mark> 91		
2. Ke	eith Owen & Trevor Colley, Automotive Fuels reference boo	ok, SAE		
3. Rt	chard L. Bechtold, Alternate fuels guide book, SAE	.1		
4. En 5 No	ergy research group, Alternate liquid fuels, Willey Eastern L	лa		
5. Na	D Bai Solar energy utilization Khanna Publishers 2004			
0. 0. 7 Dr	N K Giri Automobile technology Khanna publications			
7. DI				
	Course Plan			Com
Modulo	Contents	- L	lourg	Sem Exom
Moune	Contents	L.	louis	Marks
	2014			Wiai Ko
	Introduction			
approximately sources - conventional and non-conventional approximately approximately sources - conventional and non-conventional automobile				
Ι	fuels need for alternative energy sources	moone	7	10%
	IC engine fuel ratings- octane number cetane number	diesel		
	index fuel properties additives fuel quality aspects rela	ted to		
	emissions. Implementation barriers for alternative fuels			
	Bio fuels for SI and CI Engines			
тт	Alcohols for SI engines- manufacture of methanol, manu	facture	7	200/
11	of ethanol, comparison of properties of alcohols and gasolin	e as SI	1	20%
	engine fuels, engine performance with pure alcohols, a	alcohol		

	gasoline fuel blends-gasohol- E85.		
	Vegetable oils as diesel fuels - vegetable oils as diesel fuels,		
	straight vegetable oils and bio-diesels, performance properties of		
	engines with bio-diesel, Ethers of alcohols.		
	FIRST INTERNAL EXAMINATION		
	Hydrogen energy & Fuel Cells		
	Properties of hydrogen, sources of hydrogen, production of		
	hydrogen, electrolysis of water, thermal decomposition of water,		
TTT	thermo – chemical production and biochemical production,	7	2004
111	storage and methods, applications to engines, modifications	V1'	20%
	necessary, hazards and safety systems for hydrogen, performance	1	
	characteristics in engines. Emissions from hydrogen fuel engines.		
	Fuel cell - working, advantages and limitations.	Ant	
	CNG, LNG, Biogas, Wind Energy Gaseous fuels: Availability of		
	CNG, LNG, properties, modification required to use CNG in		
TT 7	engines. Production of Biogas, application of bio-gas as a single	7	1.50/
IV	fuel and dual fuel.	/	15%
	Basics of Wind Energy, current and future technologies; Wind		
	turbine and its components.		
	SECOND INTERNAL EXAMINATION		
	Solar power		
	Collection and storage of solar energy, collection devices, flat		
V	plate collectors, concentrating type collectors, storage methods,	7	15%
	principle and working of photovoltaic conversion, application to		
	automobiles.		
VI	Electric vehicles		
	Design considerations, limitations, opportunities for improvement,	7	200/
	applicability of electric cars, cost of electric cars, types of motors.	/	20%
	Batteries- types, capacities, limitations, future possibilities.		
	END SEMESTER EXAM		

Maximum marks: 100

The question paper shall consist of three parts

Time: 3 hours

Part A

4 questions uniformly covering modules I and II. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part B

4 questions uniformly covering modules III and IV. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part C

6 questions uniformly covering modules V and VI. Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

Course	Course Name	L-T-P –	Y	ear of
code		Credits	Intr	oduction
AU362	HYBRID AND FUEL CELL VEHICLES	3-0-0-3		2016
Prerequis	ite : Nil			
Course O	bjectives			
• To	provide an overview about the hybrid and fuel cell vehicles.			
Syllabus				•,
Introductio	on to hybrid electric vehicles, Hybrid Electric Drive-trains	, Electric Pi	ropulsi	on unit,
in Uubrid	and Electric Vehicles Sizing the drive system Sele	ergy Storage	Requi	rements
technolog	Communications supporting subsystems: Fuel cell char	acteristics- f	nergy hel cel	ll types
Fuel cell	electric vehicles: Short Term Storage Systems; Fleeten Chart	neel Accum	ulators	S. Ultra
capacitors	Superconducting magnetic energy storage; Hydraulic	Accumulato	ors; H	ydraulic
Pumps/Mo	otors - Pneumatic Hybrid Engine Systems. Energy mana	gement stra	tegies	used in
hybrid veh	iicles.			
Expected	loutcome			
• Th	e students will get an idea of the present scenario about hybr	id vehicles i	n the c	ontext of
ene	ergy conservation and pollution control.			
Text Boo)k:			
1. Iqbal	Hussein, "Electric and Hybrid Vehicles: Design Fundament	als", CRC I	Press, 2	2003.
Reference	PPS			
1. Me	ehrdadEhsani, YimiGao, Sebastian E, Gay, Ali Emadi,	"Modern H	lectric	. Hvbrid
Ele	ectric and Fuel Cell Vehicles: Fundamentals, Theory and De	sign'', CRC	Press,	2004.
2. Mi	ke Westbrook, "The Electric Car: Development & Future	of Battery-	Hybri.	d & Fuel
Ce	<i>ll Cars</i> ", British library Cataloguing in Publication Data.			
3. Jol	nn M. Miller, "Propulsion System for Hybrid Vehicle", Th	he Institutio	n of E	ngineers,
Lo	ndon, UK, 2004.		****	
4. Jai	nes Larminie, John Lowry – Electric vehicle technology exp	lained – Joh	n Wile	y
	Course Flan			Som
Module	Contents	н	ours	Sem. Exam
mouule	contents		Juis	Marks
	Introduction to hybrid electric vehicles: components, adva	ntages		
	and disadvantages, application, social and environ	nental		
Ι	impacts. Hybrid Electric Drive-trains: Basic concept of l	hybrid	7	15%
	traction, introduction to various hybrid drive-train topol	logies,		
	power flow control in hybrid drive-train topologies.			
	Electric Propulsion unit: Introduction to electric compo-	onents		
п	of PMDC Motor drives. Configuration and control of l		7	15%
- 11	Motor drives Configuration and control of Induction	Motor	1	1370
	drives.			
	FIRST INTERNAL EXAMINATION	I		L
	Energy Storage: Introduction to Energy Storage Requirem	nents in		
	Hybrid and Electric Vehicles, Battery based energy storage	and its		
III	analysis, Fuel Cell based energy storage and its analysis	, Super	7	15%
	Capacitor based energy storage and its analysis, Flywhee	l based		
	energy storage and its analysis, Hybridization of different	energy		

	storage devices.		
IV	Sizing the drive system: Matching the electric machine and the internal combustion engine (ICE), Sizing the propulsion motor, sizing the power electronics, selecting the energy storage technology, Communications, supporting subsystems	7	15%
	SECOND INTERNAL EXAMINATION		
V	Fuel cell characteristics, fuel cell types: alkaline fuel cell. Proton exchange Membrane; direct methanol fuel cell. Phosphoric acid fuel cell, molten carbonate fuel cell, solid oxide fuel cell, hydrogen storage systems - reformers; Fuel cell vehicles.	7	20%
VI	Short Term Storage Systems: Flywheel Accumulators, Ultra capacitors, Superconducting magnetic energy storage; Hydraulic Accumulators; Hydraulic Pumps/Motors - Pneumatic Hybrid Engine Systems. Energy management strategies used in hybrid and electric vehicles: types, comparison and implementation issues	7	20%
	FND SEMESTER FXAM		

Maximum marks: 100

Time: 3 hours

The question paper shall consist of three parts

Part A

4 questions uniformly covering modules I and II. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks =30 marks)

Part B

4 questions uniformly covering modules III and IV. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part C

6 questions uniformly covering modules V and VI. Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

014

Note: In all parts, each question can have a maximum of four sub questions, if needed

Course	Course Name	L-T-P – Credits	Y	ear of	
	AUTOMOTIVE SYSTEM DESIGN	4_0_0_4		00000000000000000000000000000000000000	
AU401 Proroquie	ite: ME307 Machine design I	4-0-0-4		2010	
Trerequisite. WiE307 Wachine design 1					
Course O • To	bjectives impart the design aspects of various automo	tive system components	5		
Syllabus Basic Def gear, desig componer	initions and Terminologies, design parameter gn of engine structure, design of lubricating s ts, design of speed gear boxes	s for multi-cylinder eng ystem elements, design	gine, desigr of cooling	of valve system	
Expected • Th	outcome . e students will be able to design basic compo	onents of automotive sys	stems		
Reference 1. 2. 3.	Ces A. Kolchin and V. Demidov ,Design of auto N K Giri, Automobile Mechanics (through j P. M. Heldt, High speed combustion eng IBH Co. Pyt. Ltd.	omotive engines, , Mir F problems), Khanna Pub gines-design-production	Publishers, lishers 1- test, Ox	Moscow	
	Course I	Plan			
Module	Contents	$\gamma \gamma$	Hours	Sem. Exam Marks	
I	Basic Definitions and Terminologies: A resistance-total resistance, vehicle speed- driving force-driving horse power-brake h horse power- indicated mean effective press effective pressure- frictional horse power- mechanical efficiency- brake torque problems for familiarization with the definition	Air resistance-rolling driving force-excess orse power-indicated ssure- frictional mean ver- indicated horse te. Simple numerical	9	15%	
II	Design parameters for multi-cylinder of made for design- body dimensions-engi timing angles- performance parameters maximum torque, acceleration), calcula efficiency and brake torque based of terminologies and assumptions, plotting of based on the calculations, Turning momen cylinder-net load on piston- side thru moment.	engine: Assumptions ne dimensions-valve (maximum power, ation for mechanical on the definitions- f performance curves t calculation for each st-combined turning	10	15%	
	FIRST INTERNAL EXAMINATION				
III	Design of valve gear- Introduction-main d sections in the throat and valve-main dimen- shaping of convex cam and harmonic cam w time section of valve-design of valve spring	imensions of passage nsions of intake cam- with flat follower- the	9	15%	
IV	Design of Engine Structure- Cylinder crankcase-cylinder liners-cylinder block hea Design of lubricating system elements- oil filter-oil cooler-Design of bearings	block and upper ad-cylinder studs, Oil pump-centrifugal	9	15%	

	SECOND INTERNAL EXAMINATION				
V	Design of cooling system components- Introduction-Water pump design (petrol engines and diesel engines)-Radiator (petrol engines and diesel engines)-Cooling fan(petrol engines and diesel engines)	9	20%		
VI	Design of speed gear boxes , standardization of spindle speeds, speed diagrams, design of housings, lubrication considerations	10	20%		

END SEMESTER EXAM

Question Paper Pattern

Time: 3 hrs

The question paper should consist of three parts

Part A

Maximum marks: 100.

3 questions uniformly covering modules I and II. Each question carries 15 marks Students will have to answer any two questions out of 3 (2X15 marks = 30 marks)

Part B

3 questions uniformly covering modules III and IV. Each question carries 15 marks Students will have to answer any two questions out of 3 (2X15 marks = 30 marks)

Part C

3 questions uniformly covering modules V and VI. Each question carries 20 marks Students will have to answer any two questions out of 3 (2X20 marks =40 marks)

Course code	Course Name L-	T-P – redits	Yea	ar of Juction	
AU402	TWO AND THREE WHEELERS 3-	0-0-3	20)16	
Prerequis	ite : Nil			_	
Course O • To asp Syllabus	bjectives understand the constructional details operating characteri bects.	stics ar	nd vehicl	e design	
The power box, chass study.	r unit- two and four stroke, fuel and ignition system, transmiss sis and sub systems-frames-suspension, brakes and wheels, tw	ion syst	tems-cluto three whe	ches-gear eler-case	
Expected • Th inc	l outcome . e students will acquire two and three wheeler technology and la lustry.	atest dev	velopmen	ts in the	
Text Boo	ok: ing. P. E., Motor cycle Engineering, Temple Press Book, Lond	on, 199	2.		
Reference 1. Br 2. En 19 3. 3. K. 4. Ra 5. Th	es yaut. R. V., Vespa maintenance and repair service. cyclopedia of Motor cycling, 20 volumes, Marshall Cavensih 89. K. Ramalingam, Two Wheelers, Scitech publications, Chennai. ymond Broad, Lambretta- A practical guide to maintenance and e Cycle Motor Manual Temple Press Ltd. London 1990	, New V d repair,	York and , 1987.	London,	
<u> </u>	Course Plan				
Module	Contents		Hours	End Sem. Exam Marks	
Ι	The power plant Two stroke and four stroke SI and CI engine construction working, merits and demerits, symmetrical and unsymmetry valve and port timing diagrams, scavenging process.	n and etrical	7	15%	
п	Fuel and ignition system Fuel system- Different circuits in two injection system, lubrication system Ignition systems- magneto coil and battery coil spark ig system, electronic ignition system, starting system- kick s system-self starter system, recent technologies	s, fuel nition starter	7	15%	
	FIRST INTERNAL EXAMINATION				
III	Transmission system Clutches- single- multi plate and centrifugal clutches, Gea and its various gear controls in two wheelers.	r box	7	15%	
IV	Chassis and sub-systems Main frame for two and three wheelers. Its types, chassi different drive systems for two wheelers Front and rear suspension systems-shock absorbers, panel n and controls on handle bar, freewheeling devices	s and neters	7	15%	

Brakes and wheels Drum brakes and disc brakes-construction- working and types, front and rear brake link lay outs, brake actuation mechanism, spokes wheel, cast wheel, disc wheel and its merits and demerits Tyres and tubes construction and types, steering geometry820%VITwo and three wheelers- case study Case study of sports bike, motor cycles, scooters and mopeds-auto rickshaws, pick up van, delivery van and trailer, servicing and620%	SECOND INTERNAL EXAMINATION			
Two and three wheelers- case study Case study of sports bike, motor cycles, scooters and mopeds-auto rickshaws, pick up van, delivery van and trailer, servicing and620%	V	Brakes and wheels Drum brakes and disc brakes-construction- working and types, front and rear brake link lay outs, brake actuation mechanism, spokes wheel, cast wheel, disc wheel and its merits and demerits Tyres and tubes construction and types, steering geometry	8	20%
maintenance, recent developments	VI	Two and three wheelers- case study Case study of sports bike, motor cycles, scooters and mopeds-auto rickshaws, pick up van, delivery van and trailer, servicing and maintenance, recent developments	6	20%

END SEMESTER EXAM

Question Paper Pattern

Time: 3 hours

Maximum marks: 100 The question paper shall consist of three parts

Part A

4 questions uniformly covering modules I and II. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part B

4 questions uniformly covering modules III and IV. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part C

6 questions uniformly covering modules V and VI. Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

Course	Course Name	L-T-P – Credits	Year of		
code			Introduction		
AU403	VEHICLE DYNAMICS	3-0-0-3	2016		
Dronoguisito - Nil					

Prerequisite : Nil

Course Objectives

- To familiarize the students with vibrating systems
- To understand the characteristics of the tires.
- To know about the stability and handling characteristics of vehicles at different tracks.

Syllabus

Stability of vehicles-Braking requirements-Road Loads-Over steer, under steer, steady state cornering-Suspension-Tires-Performance of road vehicles-Classification of vibration-aerodynamic forces

Expected outcome.

• The students will be able to solve simple design problems based on the vehicle stability and various design parameter based problems.

Text Book:

- 1. Giri N.K, Automobile Mechanics, 8/e, Khanna Publishers
- 2. Rao V. Dukkipati, Jian Pang, "Road Vehicle Dynamics problems and solution", SAE, 2010

References

1. David Corolla, 'Automotive Engineering', 'Powertrain, chassis system and Vehicle Body', Butterworth Heinmann, 2009

-

- 2. G. Giles, 'Steering, Suspension and Tires, Illiffe Books Ltd., 1968.
- 3. J. Y. Wong, 'Theory of Ground Vehicles', John Wiley and Sons Inc., New York
- 4. JazarR N, Vehicle Dynamics, Springer Verlag, New York, 2014
- 5. W. Steeds, Mechanics of road vehicles, Wildlife book Ltd, London 1990.

Course Plan						
Modul e	Contents	Hour s	Sem.ExamMar ks			
Ι	Classification of vibration, Specification and Vibration, Vibration System and human comforts, Modal Analysis, One DOF, Two DOF, Free and Forced Vibration, Damped Vibration, Magnification and Transmissibility, Vibration Absorber. Performance of road vehicles: Tractive resistance, tractive effort, power required for propulsion, grade ability, drawbar pull and the problems related to these terms. Road performance curves- acceleration, gradability and drawbar pull, acceleration time and Elasticity.	7	15%			
п	Tires: tire dynamics Ride characteristics, Behavior while Cornering, Slip angle, Cornering force, Power consumed by Tire, Oversteer, under steer, steady state cornering, aligning moment-combined braking and Cornering, effect of camber & transient effects in cornering. Tire vibrations	7	15%			
	FIRST INTERNAL EXAMINATION					
III	Suspension: Vehicle dynamics and suspension	7	15%			

	requirements, choice of suspension spring rate, chassis			
	springs and theory of chassis springs, Gas & hydraulic			
	dampers and choice of damper, damper characteristics,			
	mechanics of an independent suspension system, Roll			
	axis and the vehicle under the action of side forces.			
	Stability of vehicles: Load distribution (Inree wheeled			
	and four wheeled venicles), Calculation of acceleration,			
	tractive effort and reactions for different drives, stability	SAN A		
IV	of a venicle on a curved track, slope and a banked road.	7	A	15%
	Gyroscopic effects, weight transfer during acceleration,	1 AL	V.1	
	Cornering and braking, stability of a rigid vehicle and	- A.		
	equations of motion of a rigid vehicle, cross wind	- 1	1.1	
	nandling.	1		
	SECOND INTERNAL EXAMINATION			
	Over steer, under steer, steady state cornering. Effect of	_		
	braking, driving torques on steering.			
\mathbf{V}	Effect of camber, transient effects in cornering.	7		20%
·	Directional stability of vehicles.			
	Braking requirements, stopping distance, braking			
	efficiency, work done in braking, tire adhesion.			
	Road Loads: Air resistance-Mechanics of air flow around			
	a vehicle, pressure distribution on a vehicle, factors			
	affecting rolling resistance, aerodynamic forces –	1		
VI	aerodynamic drag, drag components, drag coefficient,	7		20%
	aerodynamic aids, aerodynamic side force, lift force,			
	pitching moment, yawing moment, rolling moment, cross			
	wind sensitivity			
l	END SEMESTER EXAM			

Maximum marks: 100,

Time: 3 hrs

The question paper should consist of three parts

Part A

3 questions uniformly covering modules I and II. Each question carries 15 marks Students will have to answer any two questions out of 3 (2X15 marks =30 marks)

Part B

3 questions uniformly covering modules III and IV. Each question carries 15 marks Students will have to answer any two questions out of 3 (2X15 marks = 30 marks)

Part C

3 questions uniformly covering modules V and VI. Each question carries 20 marks Students will have to answer any two questions out of 3 (2X20 marks =40 marks)

Course co	de Course Name	L-T-P - Credit	S Int	Year of roduction
AU404	ENGINE AND VEHICLE MANAGEMENT SYSTEMS	3-0-0-3		2016
Prerequis	ite : Nil			
Course O	bjectives			
•	To understand the principles of various elect	ronic systems in eng	ine and vel	nicle
	management systems.			
Svllabus	APLARNU	KALAN	A	
Open and	closed loop control system, P, PI and PID co	ontrol, ECUs in an A	utomobile	, Electronic
engine con	trol, Engine performance variables and its	control strategies; E	lectronic f	uel control,
Fuel inject	tion system parameters affecting combusti	on, noise and emis	sions in (CI engines.
Electronic	ignition control, Electronic control tran	nsmission, GPS na	vigation,	On Board
Diagnostic	s (OBD).Cruise control system, Anti-lock	braking system, Tra	ction cont	rol system,
Electronic	brake force distribution, Electronic stabilit	y program. Airbags	, Collision	avoidance
radar war	ling system, Tyre pressure monitoring, Lan	e departure warning	system, N	light vision
system				
Expected	The students will be able to explain the princ	vinlag of various alas	tronio ongi	no and
•	vehicle management systems	siples of various elec	uonic engi	ne anu
Text Boo	k•			
Wi	liam B Ribbens, "Understanding Automotive I	Electronics: An Engin	eering Pers	pective".
Bu	terworth-Heinermann, 7th edition, 2012			F ,
Reference	es:			
1. Eri	c Chowanietz, "Automobile Electro <mark>ni</mark> cs" SAI	E Publications, 1994		
2. Ko	nrad Reif (Ed.), Bosch Profes <mark>si</mark> onal A	utomotive Informa	tion, Die	sel Engine
ma	nagement Systems and Components, Springe	r Verlag, 2014		
3. Ko	nrad Reif (Ed.), Bosch Professional Auto	motive Information	, Gasoline	e Engine
ma	nagement Systems and Components, Spring	er Verlag, 2015		
4. Ko	bert Bosch, "Automotive Hand Book", SAE (8th Edition), 2011.	2012	
5. Ste	n Denton, "Automobile Electrical and Electric	, Cengage Learning,	2012 ition Pout	ladga
0.10	2	ome systems 4m eu	mon, Kou	lleuge,
20.	Course P	lan		
		1411		Sem. Exam
Module	Contents	1	Hours	Marks
	Open and closed loop control system, P, P	I and PID control,		
Ι	ECUs in an Automobile, Microcomputers	in Control system,	-	15%
	look up tables, Introduction to modern con	trol strategies like	1	
	Fuzzy logic and adaptive control	d output Engine		
	performance variables and its control	strategies Engine		
	mapping	strategies, Englie		
II	Effect of Air/Fuel ratio on performance Eff	fect of spark timing	7	15%
	on performance Effect of EGR on per	formance exhaust		
	control			
I	FIRST INTERNAL EXA	MINATION		
	Electronic fuel control, engine control seque	ence, open loop	7	150/
111	and closed control, cold starting, acceleration	n and full load	/	15%

	enrichment, deceleration leaning, overrun fuel cut off, Idle speed control and EGR control		
IV	Fuel injection system parameters affecting combustion, noise and emissions in CI engines. Pilot, main, advanced post injection and retarded post injection. Electronic ignition control, Ignition timing map, Ignition timing calculation (Initial timing, Basic advance angle, Corrective advance angle), spark advance correction scheme.	7	15%
	SECOND INTERNAL EXAMINATION	1	-
V	Electronic control transmission: control of shift timing, control of lock up, neutral to drive squat control, engine torque control. Dual clutch automatic, Automated manual transmission, Continuously variable transmission. GPS navigation and On Board Diagnostics (OBD).	7	20%
VI	Cruise control system, Anti-lock braking system, Traction control system, Electronic brake force distribution, Electronic stability program. Airbags, Collision avoidance radar warning system, Tyre pressure monitoring, Lane departure warning system, Night vision system	7	20%
	END SEMESTER EXAM		

Estd.

Maximum marks: 100

Time: 3 hours

The question paper shall consist of three parts

Part A

4 questions uniformly covering modules I and II. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part B

4 questions uniformly covering modules III and IV. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part C

6 questions uniformly covering modules V and VI. Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

Course	Course Name	L-T-P –	Y	ear of		
code		Credits	Intro	oduction		
AU405	AUTOMOTIVE REFRIGERATION AND AIR	3-0-0-3	-	2016		
	CONDITIONING					
Prerequi	site: Nil					
Course C	Dbjectives					
• To	impart knowledge about refrigeration and air conditioning sys	tems, comp	onents	, control		
an	d service.	1. 1				
• To	o understand the procedure for refrigeration and air conditioning le	oad calculat	ion.			
Syllabus	TETUNIQUAN	a 1				
Principles	of refrigeration, Air conditioning systems, load on refrigeration of	& air condit	ioning	systems,		
air distrib	ution systems, air routing and temperature control, air conditioning	ng control, a	ir con	ditioning		
service.						
Expecte	d outcome.					
• 7	The students will be able to do refrigeration and air conditioning lo	bad calculat	on.			
T (D						
Text Bo	0KS: aven Dely Automotive Air conditioning and Climete Control Sy	stome Putt	muort1			
1. St Ц	even Dary, Automotive An conditioning and Chinate Control Sy	stems, Dutte	nworu	1-		
2 V	Paul Lang Principles of Air Conditioning by CBS Publishers ar	nd Distribute	ors Pyt	Ltd		
2. •	r dui Dang, r rincipies of rai conditioning by, ebb r donsiers d		/// / / / / / / / / / / / / / / / / /	.Ltu		
Deferon	005					
1 C	P Arora Refrigeration and Air conditioning Tata McGraw Hill I	Publications				
1. C.	ossat. Principles of Refrigeration John Wiley and Sons	uoneations				
3. R	obert H. Enerick. Basic Refrigeration and Air-Conditioning. Prent	ice Hall of I	ndia L	td.		
4. St	oecker W.F. and Jones J.W, Refrigeration and Air-Conditioning,	McGraw- H	ill			
5. Jo	rdan and Priester, Refrigeration and Air-Conditioning, Prentice H	all of India.				
6. R.	K.Rajput, Refrigeration and Air conditioning. Kataria publishers					
7. R.	S. Khurmi and J.S Gupta, Refrigeration and Air conditioning, S	Chand Com	pany			
	Course Plan					
	Estd.	1		Sem.		
Module	Contents	Ho	ours	Exam		
				Marks		
	Principles of refrigeration: Thermodynamics of refrigeratio	n –				
	Carnot, reversed Carnot cycle, heat pump, and refrigera	tor-				
Ι	coefficient of performance -unit of refrigeration. Refrigera	tion	7	20%		
	methods-conventional reingeration systems. Air reingera	of				
	system –Bell Coleman cycle -C.O.P –capacity, types of					
	Air Conditioning Systems Classification layouts central units	rv air				
	conditioning systems, components like compressors, evapor.	ators.				
II	condensers, expansion devices, fan blowers, heating sys	tems.	7	15%		
	Automotive heaters, Types, Heater Systems, Air condition	oning				
	protection, Engine protection.					
	FIRST INTERNAL EXAMINATION					
	Load Analysis: Outside & inside design consideration fa	actors	_			
III	forming the load on refrigeration & air conditioning sys	tems,	7	20%		

	procedure for cooling & heating load calculation in automobiles, effect of air conditioning load on engine performance.		
IV	Air Distribution Systems: Distribution duct system, sizing, supply <i>I</i> return ducts, type of grills, diffusers, ventilation, air noise level, layout of duct systems for automobiles.	7	15%
	SECOND INTERNAL EXAMINATION		
V	Air Routing & Temperature Control: Objectives, evaporator air flow, through the recirculating unit, automatic temperature control, duct system, controlling flow, vacuum reserve, testing the air control of air handling systems Air Conditioning Control: Common control such <i>as</i> thermostats, humidistat, control dampers, pressure cut outs, relays	7	20%
VI	Air conditioning service: Air conditioner maintenance & service- causes of air conditioner failure, leak testing guide, discharging the system. Evacuating the system, charging the system, servicing heater system, removing & replacing components, trouble shooting of air conditioning system, compressor service, methods of dehydration, charging & testing.	7	10%
	END SEMESTER EXAM		

Maximum marks: 100

Time: 3 hours

The question paper shall consist of three parts

Part A

4 questions uniformly covering modules I and II. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part B

4 questions uniformly covering modules III and IV. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part C

6 questions uniformly covering modules V and VI. Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

Course	Course Name	L-T-P –	Ye	ar of	
code		Credits	Intro	duction	
AU407	ADVANCED IC ENGINES	3-0-0-3	2	016	
Prerequisi	te: NIL				
Course Ol • To • To • To	ojectives impart the basic concepts of non-conventional IC Engines know the new concepts of automotive engine combustion te discuss about future engine technologies	chnologies			
Syllabus Types of er Gas turbing	ngines -Dual fuel engine concepts and significance-Multi fue e plants -Stratified charge combustion in direct injection SI e	el engines-Le engines -HCC	ean burn e CI and CA	ngines - I engines	
Expected • The eng	outcome. e students will become aware of the latest developments and ines.	advancemen	it in the fie	eld of IC	
Text Boo 1. H 2 vol Vol 2. H 2 vol Vol	ks: Zhao, Advanced Direct Injection Combustion Engine T ume 1- gasoline and gas engines, Wood head publishing, 20 Zhao, Advanced Direct Injection Combustion Engine To ume 2- diesel engines, Wood head publishing, 2009	echnologies 09 echnologies	and Deve and Deve	elopment, elopment,	
 Reference books 3. H Zhao , HCCI and CAI Engines for the Automotive Industry ,Woodhead publishing 4. Derek Dunn -Rankin, Lean Combustion: Technology and Control , Academic press, 2007 5. M. L. Mathur, R. P. Sharma - Internal Combustion Engines, Dhanpat Rai Publications 6. V Ganesan, <i>Internal Combustion Engine</i> Tata Mc Graw Hill Publishing Company Ltd., New Delhi 2006. 					
	Course Plan				
Module	Contents	7	Hours	Sem. Exam Marks	
I	Types of engines - Wankel engine - Stirling engine - free engine. – light duty DI diesel engines (HSDI), high press technology, multiple injection diesel combustion	ree piston sure pump	7	15%	
П	IIDual fuel engine concepts and significance, factors affecting combustion in dual fuel engines, performance of dual fuel engines. Multi fuel engines, characteristics of multi fuel engines, performance of multi fuel engines. Concept and working of flexi fuel vehicles (FFV).715%				
FIRST INTERNAL EXAMINATION					
III	Lean burn engines – fundamentals of lean combustion – flames – auto ignitive burning – flame stabilization – le engines – engine combustion and emissions – lean limit op	burning in an burn SI erations	8	20%	
IV	Gas turbine plants – Open and closed cycles – thermodyna – regeneration – re heating – inter cooling – effic performance of gas turbines – Gas turbine as automotiv	amic cycles ciency and e engine –	6	10%	

	Limitations of gas turbine in automotive sector. Comparison of gas turbine Vs. I.C engine. Condition for perfect reheating and inter cooling. simple problems		
	SECOND INTERNAL EXAMINATION		
V	Stratified charge combustion in direct injection SI engines – thermodynamic and combustion process – production engines with stratification – future trends – Turbo charged direct injection SI engines – problems and challenges – advantages – future trends Direct injection gasoline engines with auto ignition combustion – principles and approaches – operation and control – development of practical engines – future trends. Direct injection natural gas engines – technologies – potential applications – strength and weakness – future trends	7	20%
VI	HCCI and CAI engines – fundamentals – effect of use of exhaust gas dilution – approaches to CAI/HCCI – Two stroke CAI engines – principles – control – potential applications – four stroke gasoline and diesel HCCI engines – HCCI fuel requirements – low temperature and premixed combustion with late injection – NADI concept of HCCI –CAI control and CAI/SI switching	7	20%
	END SEMESTER EXAM		

Maximum marks: 100

Time: 3 hours

The question paper shall consist of three parts

Part A

4 questions uniformly covering modules I and II. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Estd.

Part B

4 questions uniformly covering modules III and IV. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part C

6 questions uniformly covering modules V and VI. Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

Course	Course Name	L-T-P – Credits	Year of Introduction		
AU409	SIMULATION AND ANALYSIS OF IC ENGINE PROCESSES	3-0-0-3	2016		
Prerequi	site : AU201 & AU202				
Course C	bjectives				
	• To provide an outline of the simulation methods adopted for	· IC Engine	processes		
	ADI ARDI II KALA	NA			
Syllabus	nation at constant volume and constant pressure. Constant volu	ma and con	stant process		
adiabatic	combustion - Adiabatic flame temperature - Simulation of SI En	me and con	stant - pressure		
substance	under full and part throttle conditions - CI engine simulation w	ith adiabati	c combustion -		
superchar	ged and turbocharged conditions - flow through valves - Mac	h index -	Effect of valve		
timing - S	wirl and squish - scavenging parameters - delivery ratio - trapp	ing efficien	cy - two stroke		
in engine sin	nulation - Engine friction variation, models for engine friction -	Heat transf	fer mechanisms		
Expecte	d outcome.				
•	• The students will be to simulate processes in SI & CI engine	es			
Text Bo	oks:				
1. V.	Ganesan, Computer simulation of compression ignition engine pr	ocesses, Un	iversities Press		
2. V	Ganesan Computer simulation of Spark Ignition Engine Processe	s, Universit	ies Press		
		_			
Referenc	es	1000			
$3. R_1$	chard Stone, Introduction to Internal Combustion Engines, SAE I	nc., 1999	s John Wiley		
4. CC	d Sons.	mo science	s, john whey		
5. Jo	hn B Heywood, Internal Combustion Engine Fundamentals, , Mo	Graw Hill			
	Course Plan	14			
Module	Contents	Но	Sem. Exam		
Wibuule	Contents		Marks		
	Combustion Calculations: Heat of reaction at constant volume	and			
Ι	constant pressure, Calculation of properties of the wor	king 8	3 15%		
	medium in an engine, Constant volume and constant pressure				
	actuation conformation of Actuation of Actua	ui c.			
	Simulation of SI Engine Combustion: Engine kinematics, Ideal	Otto			
II	working substance under full and part throttle conditions. Actu	al SI	20%		
	engine heat release rate curves.				
 	FIDCT INTEDNAT EVANINATION	I	I		
FIRST INTERNAL EXAMINATION					

III	Simulation of CI Engine Combustion: CI engine simulation with adiabatic combustion with air as the working substance under naturally aspirated, supercharged and turbocharged conditions. Zero dimensional combustion models for CI engines	7	20%
IV	Gas Exchange Processes: Flow through valves their characteristics, compressible and incompressible flow through valves, volumetric efficiency and Mach index, Effect of valve timing on volumetric efficiency, Swirl and squish, SI engine simulation with gas exchange, influence of valve timing and area.	7	20%
SECOND INTERNAL EXAMINATION			
V	Two stroke engine scavenging parameters like delivery ratio, scavenging efficiency, trapping efficiency. Perfect displacement and perfect mixing models for scavenging. Port diagrams and two stroke engine simulation	7	15%
VI	Heat Transfer and Friction in Engines: Engine friction variation, models for engine friction, Heat transfer mechanisms in engines, Models for heat transfer in engines.	6	10%
END SEMESTER EXAM			

Maximum marks: 100

Time: 3 hours

The question paper shall consist of three parts

Part A

4 questions uniformly covering modules I and II. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part B

4 questions uniformly covering modules III and IV. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part C

2014 6 questions uniformly covering modules V and VI. Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks = 40 marks)

Course code	Course Name	L-T-P - Credits	Year of Introduction
AU431	AUTOTRONICS LAB	0-0-3-1	2016
Prerequisite : A	U302 Automotive Electrical and Electronics		
Course Objectiv Familiariz Impart kn	es the students with the various sensors used in A owledge in designing electronic circuits in autom	utomobiles.	
List of Experime	ents/Exercises (Minimum 12 are mandatory)	a + 14 14	
Testing of electro 1. Testing of 2. Diodes, T 3. Amplifier Familiarization of 4. Testing of 5. Testing of	<i>pnic components and basic electronic circuits use</i> f various sensors used in automobiles fransistor, Op-amps, Relays r using op-amp <i>of digital electronics</i> f logic gate ICs. f flip flops.	d in automobiles	
Microcontroller/A 6. Implemen 7. Interfacin 8. Interfacin 9. Interfacin 10. Interfacin 11. Interfacin 12. On-board 13. Familiariz 14. Design ar 15. Design ar 16. Design ar	Microprocessor programming and interfacing (8 at simple programs (arithmetic operations/logic fu g various sensors like RTD, LVDT, load cell etc. g seven segment displays. g of stepper motor g ADC for data acquisition and DAC for control diagnostics (OBD) and fault detection vation of engine remapping tools and software id testing of circuit for electronic ignition triggeri ad testing of the circuits for ABS, Cruise Control.	2085/PIC/Arduinconctions) application. ng system.))
• The stud	ome. ents will have hands-on-experience in auto electronic electro	ical systems and	fault diagnostics.
List of Equipme	nts needed		
 CPS, MA Diodes, T Logic gat Microcon Seven seg Interface OBD scat Electronic RF transc ABS mod 	F, MAP, ECT, IAT, Lambda sensor, Knock sense ransistors, Op-amp, Relays es, Flip flops trollers (PIC/8085/ Arduino) gments displays, Stepper motors, DC motors cards, ADC, DAC mers and softwares c triggering devices (Hall Effect sensor, Pickup co eivers, Proximity sensors ules and actuators, RADAR modules	or etc. bil, Optical)	

Course	Course Name	L-T-P –	Year of
code		Credits	Introduction
AU462	VEHICLE MAINTENANCE	3-0-0-3	2016

Prerequisite : Nil

Course Objectives

- To impart knowledge on maintenance of vehicles to give maximum life for vehicles
- To identify various troubles occurred for the vehicles from the symptoms shown.

Syllabus

Maintenance schedule, importance of maintenance, repair of chassis, repair of various drive train components, engine overhauling, auxiliary systems repair, introduction to the maintenance of new generation vehicles, introduction to on board diagnostics.

Expected outcome.

• The students will be able to identify the troubles of the vehicles from the symptoms shown.

Text Book:

- 1. A W. Judge, Maintenance of high speed diesel engine, Chapmann Hall Ltd.
- 2. Boyce Dwiggins, Automobile Repair guide, Theodor Audel and Co., Indiana, 1978.

References

- 1. A. W. Judge Motor vehicle engine servicing 3rd edition, Pitman paper mark, London, 1969.
- 2. Vehicle service manuals of reputed manufacturers.
- 3. William B Ribbens Understanding automotive electronics, Newnes, 2003

Course r lan					
Module	Contents	Hours	Sem. Exam Marks		
I	Maintenance, Records and schedules: Importance of maintenance, types of maintenance, inspection, schedule, maintenance, log sheets, servicing, requirements of service station, layout and personnel for service station.	7	15%		
П	Maintenance and repair of chassis: Servicing of clutch assembly, gearbox and propeller shaft, troubles and trouble shooting on transmission, differential maintenance and repair, backlash adjustment, servicing of braking system, identification and rectification of brake faults, brake testing steering system, maintenance, tyre rotation, tyre retreading, checking and adjusting, suspension, wheel balancing, wheel alignment.	7	15%		
FIRST INTERNAL EXAMINATION					
III	Engine overhauling and repair: Reconditioning of engine, specific tools used for overhauling, de-carbonizing and degreasing, engine tune up, valve reconditioning, use of automobile stethoscope, troubles and troubleshooting related to engines.	7	15%		
IV	Vehicle body repair and maintenance, minor panel beating, dolly blocks, tinkering, body painting, maintenance of body trim, specific tools for body repair, methods of towing a vehicle.and disadvantages.	7	15%		
SECOND INTERNAL EXAMINATION					
-----------------------------	--	---	-----	--	--
V	Maintenance of auxiliaries: Maintenance of starter motor and dynamo or alternator, battery maintenance, methods of testing various electrical accessories and other accessories, radiator service, anticorrosion additives, engine oil change, preventive maintenance.	7	20%		
VI	Introduction to maintenance of new generation vehicles- On board Diagnostics- software tools used for the error diagnostics in new generation vehicles- common types of sensor errors- procedure of on board diagnostics.	7	20%		
END CEMESTED EVAN					

Question Paper Pattern

Maximum marks: 100

Time: 3 hours

The question paper shall consist of three parts

Part A

4 questions uniformly covering modules I and II. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part B

4 questions uniformly covering modules III and IV. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks =30 marks)

Part C

6 questions uniformly covering modules V and VI. Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

Note: In all parts, each question can have a maximum of four sub questions, if needed

Course code	Course Name	L-T-P – Credits	Y Intr	ear of oduction		
AU463	OPERATION MANAGEMENT IN AUTO INDUSTRY	3-0-0-3		2016		
Actors INDUSTRY 5-0-0-3 2010 Course Objectives • To introduce the basic concepts of automotive industry • To impart the basic concepts of plant operation and management • To impart the basic concepts of plant operation and management • To discuss automotive marketing and supply chain limits • Syllabus Syllabus Strategic planning of production activities -Manufacturing engineering planning -Labour efficiency analysis – manpower planning -Plant manufacturing system -Equipments – general service, -Logistics – evolution -Role of purchasing department -Quality management Expected outcome. • The students will be able to apply management principles in automotive industry and various management related affairs used in automotive industry Text Books: 1. Marco Gobetto, Operation management in automotive industries, Springer, 2013 Reference books Expected backs						
Co 2. Jos He 3. R I Hil	 Construction Plant and Equipment, Chandos publication Joseph Berk, Susan Berk Quality Management for the Technology Sector, Butterworth- Heinemann publication R B Chase & F R Jacobs, Operations Management for Competitive Advantage, McGraw Hill 					
	Course Plan					
Module	Contents	н	ours	Sem. Exam Marks		
Strategic planning of production activities – process integration – 'make or buy' decision making – manufacturing system setup – location criteria – overview of technology in construction – sketches of manufacturing systems. 7 Standardization logic & project setup – process description – information technology systems – product composition analysis – management of technical changes.			10%			
II	- management of technical changes.Manufacturing engineering planning – executive project – working time analysis methodologies – man-machine interaction – standard working time – equipment utilization analysis – operation productivity – machine loading – installed productive capacity720%IIproductivity – machine loading – installed productive capacity Labour efficiency analysis – man power planning – working time length o labour productivity improvement – task assigning – workload balancing – motivating employees7					

III	Plant manufacturing system – reliability & maintainability – autonomous and professional maintenance – correlation between cost and maintenance – breakdown and preventive maintenance activity volume Equipments – general service, co-generation & auxiliary equipments – energy consumption optimization – tools and consumable management – TPM approach	7	15%
IV	Logistics – evolution – flow in supply chain – material handling – inventory management methodologies – production and delivery planning – logistics information systems	7	15%
SECOND INTERNAL EXAMINATION			
V	Performance indicators of logistics – finished product inventory, process lead time, flow index, risk indicators, lead time, service level – JIT approach	7	20%
VI	Role of purchasing department – purchasing policies – management of supplier network – order procedure – supplying cost – purchase effectiveness – e-procurement Quality management – product design phase – TQM – continuous improvement approach – kaizen and kanban systems.	7	20%

Question Paper Pattern

Maximum marks: 100

Time: 3 hours

The question paper shall consist of three parts

Part A

4 questions uniformly covering modules I and II. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part B

4 questions uniformly covering modules III and IV. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part C

6 questions uniformly covering modules V and VI. Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

Note: In all parts, each question can have a maximum of four sub questions, if needed

BE102 DESIGN AND ENGINEERING

Course No.	Course Name	L-T-P-Credits	Year of Introduction			
BE102	DESIGN AND ENGINEERING	2-0-2-3	2015			
Course Objective	es					
The purpose of th	is course is:-					
1. To excite the s	tudent on creative design and its signifi	cance;				
2. To make the st	udent aware of the processes involved i	n design;				
3. To make the st	udent understand the interesting interac	tion of various segm	nents of humanities, sciences and			
engineering in	the evolution of a design;	8 T Y				
4. To get an expo	sure as to how to engineer a design.					
Syllabus						
Design and its objectives; Role of science, engineering and technology in design; Engineering as a						
business proposition; Creative design and the Design Process; Design evaluation and communication						
of designs; Design for function and strength; Material selection and design detailing; Role of standards						
in design Engineering the design; Design for "X"; Product centered and user centered design; Aesthetics						

and ergonomics; Concepts of value engineering, concurrent engineering and reverse engineering in design; Culture based design; Modular design; Design optimization needs; User interface; Intelligent and autonomous products; Internet of things; Advanced products and human psychology; Life cycle design; Product and its environment; Design as a marketing tool; Products and IPR; Product liability.

Expected outcome

The student will be:-

- 1. Able to appreciate the different elements involved in good designs and to apply them in practice when called for.
- 2. Aware of the product oriented and user oriented aspects that make the design a success.
- 3. Will be capable to think of innovative designs incorporating different segments of knowledge gained in the course;
- 4. Students will have a broader perspective of design covering function, cost, environmental sensitivity, safety and other factors other than engineering analysis.

References Books:

- Balmer, R. T., Keat, W. D., Wise, G., and Kosky, P., Exploring Engineering, Third Edition: An Introduction to Engineering and Design [Part 3 Chapters 17 to 27], ISBN13: 978-0124158917 ISBN-10: 0124158919
- Dym, C. L., Little, P. and Orwin, E. J., Engineering Design A Project based introduction Wiley, ISBN-978-1-118-32458-5
- Eastman, C. M. (Ed.), Design for X Concurrent engineering imperatives, 1996, XI, 489 p. ISBN 978-94-011-3985-4 Springer
- Haik, Y. And Shahin, M. T., Engineering Design Process, Cengage Learning, ISBN-13: 978-0-495-66816-9
- Pahl, G., Beitz, W., Feldhusen, J. and Grote, K. H., Engineering Design: A Systematic Approach, 3rd ed. 2007, XXI, 617p., ISBN 978-1-84628-319-2
- Voland, G., Engineering by Design, ISBN 978-93-325-3505-3, Pearson India

Web pages:

- 1. E-Book (Free download): http://opim.wharton.upenn.edu/~ulrich/designbook.html
- 2. http://www2.warwick.ac.uk/fac/sci/wmg/ftmsc/modules/modulelist/peuss/designforx/design_for_x_notes_s ection_5.pdf

TTC

24 BCs (628

	Course Plan					
Module	Contents	Hours	Sem. Exam Marks			
Ι	Design and its objectives; Design constraints, Design functions, Design means and Design from; Role of Science, Engineering and Technology in design; Engineering as a business proposition; Functional and Strength Designs. Design form, function and strength;	L2				
	How to initiate creative designs? Initiating the thinking process for designing a product of daily use. Need identification; Problem Statement; Market survey- customer requirements; Design attributes and objectives; Ideation; Brain storming approaches; arriving at solutions; Closing on to the Design needs.	L3	15%			
	An Exercise in the process of design initiation. A simple problem is to be taken up to examine different solutions-Ceiling fan? Group Presentation and discussion.	P4				

II	Design process- Different stages in design and their significance; Defining the design space; Analogies and "thinking outside of the box"; Quality function deployment-meeting what the customer wants; Evaluation and choosing of a design.	L2	15%		
	Design Communication; Realization of the concept into a configuration, drawing and model. Concept of "Complex is Simple". Design for function and strength. Design detailing- Material selection, Design visualisation- Solid modelling; Detailed 2D drawings; Tolerancing; Use of standard items in design; Research needs in design; Energy needs of the design, both in its realization and in the applications.	L3			
	An exercise in the detailed design of two products (Stapler/ door/clock)	P4			
	FIRST INTERNAL EXAM				
III	Prototyping- rapid prototyping; testing and evaluation of design; Design modifications; Freezing the design; Cost analysis.	n of Cost L2			
	t. L3				
	manufacturing/construction operations; storage; packaging shipping; marketing; feed-back on design.	;			
	List out the standards organizations. Prepare a list of standard items used in any engineering specialization. Develop any design with over 50% standard items as parts.	P4			
IV	IVDesign for "X"; covering quality, reliability, safety, manufacturing/construction, assembly, maintenance, logistics, handling; disassembly; recycling; re-engineering etc. List out the design requirements(x) for designing a rocket shell of 3 meter diameter and 8 meter length.L4		15%		
	Design mineral water bottles that could be packed compactl for transportation.	y P4			
	SECOND INTERNAL EXAM				
V	Product centred and user centred design. Product centred attributes and user centred attributes. Bringing the two closer. Example: Smart phone. Aesthetics and ergonomics.	L2	20%		

	Value engineering, Concurrent engineering, Reverse engineering in design; Culture based design; Architectural designs; Motifs and cultural background; Tradition and design; Study the evolution of Wet grinders; Printed motifs; Role of colours in design.	L4		
	Make sharp corners and change them to smooth curves- check the acceptance. Examine the possibility of value addition for an existing product.	P6		
VI	Modular design; Design optimization; Intelligent and autonomous products; User interfaces; communication between products; autonomous products; internet of things; human psychology and the advanced products. Design as a marketing tool; Intellectual Property rights – Trade secret; patent; copy-right; trademarks; product liability.	L3	20%	
	Group presentation of any such products covering all aspects that could make or mar it.	P6		
END SEMESTER EXAM				

Course No.	Course Name	L-T-P-Credits	Year of Introduction
BE103	INTRODUCTION TO SUSTAINABLE ENGINEERING	2-0-1-3	2016

Course Objectives

To have an increased awareness among students on issues in areas of sustainability

- To understand the role of engineering and technology within sustainable development;
- To know the methods, tools, and incentives for sustainable product-service system development
- To establish a clear understanding of the role and impact of various aspects of engineering and engineering decisions on environmental, societal, and economic problems.

Syllabus

Sustainability- need and concept, challenges, Environment acts and protocols, Global, Regional and Local environmental issues, Natural resources and their pollution, Carbon credits, Zero waste concept ISO 14000, Life Cycle Analysis, Environmental Impact Assessment studies, Sustainable habitat, Green buildings, green materials, Energy, Conventional and renewable sources, Technology and sustainable development, Sustainable urbanization, Industrial Ecology.

Expected outcome

The student will be

- Able to understand the different types of environmental pollution problems and their sustainable solutions
- · Able to work in the area of sustainability for research and education
- Having a broader perspective in thinking for sustainable practices by utilizing the engineering knowledge and principles gained from this course

Reference Books:

- Allen, D. T. and Shonnard, D. R., Sustainability Engineering: Concepts, Design and Case Studies, Prentice Hall.
- Bradley, A.S; Adebayo, A.O., Maria, P. Engineering applications in sustainable design and development, Cengage learning
- Environment Impact Assessment Guidelines, Notification of Government of India, 2006
- Mackenthun, K.M., Basic Concepts in Environmental Management, Lewis Publication, London, 1998
- ECBC Code 2007, Bureau of Energy Efficiency, New Delhi Bureau of Energy Efficiency Publications-Rating System, TERI Publications - GRIHA Rating System
- Ni bin Chang, Systems Analysis for Sustainable Engineering: Theory and Applications, McGraw-Hill Professional.
- Twidell, J. W. and Weir, A. D., Renewable Energy Resources, English Language Book Society (ELBS).

	Course Plan		
Module	Contents	Hours	Sem. Exam Marks
1	Sustainability - Introduction, Need and concept of sustainability, Social- environmental and economic sustainability concepts. Sustainable development, Nexus between Technology and Sustainable development, Challenges for Sustainable Development. Multilateral environmental agreements and Protocols - Clean Development Mechanism (CDM), Environmental legislations in India - Water Act, Air Act.	L4	15%
	Students may be assigned to do at least one project eg: a) Identifying/assessment of sustainability in your neighbourhood in education, housing, water resources, energy resources, food supplies, land use, environmental protection etc. b) Identify the threats for sustainability in any selected area and explore solutions for the same	Pl	1570
п	Air Pollution, Effects of Air Pollution; Water pollution- sources, Sustainable wastewater treatment, Solid waste - sources, impacts of solid waste, Zero waste concept, 3 R concept, Global environmental issues- Resource degradation, Climate change, Global warming, Ozone layer depletion, Regional and Local Environmental Issues. Carbon credits and carbon trading, carbon foot print.	L6	15%
	Students may be assigned to do at least one project for eg: a) Assessing the pollution status of a small area b) Programmes for enhancing public environmental awareness c) Observe a pond nearby and think about the different measures that can be adopted for its conservation	Р3	
	FIRST INTERNAL EXAM		
ш	Environmental management standards, ISO 14000 series, Life Cycle Analysis (LCA) - Scope and Goal, Bio-mimicking, Environment Impact Assessment (EIA) - Procedures of EIA in India.	L4	
	Students may be assigned to do at least one project eg: a) Conducting LCA of products (eg. Aluminium cans, PVC bottles, cars etc. or activities (Comparison of land filling and open burning) b) Conducting an EIA study of a small project (eg. Construction of a building)	P2	15%

IV	Basic concepts of sustainable habitat, Green buildings, green materials for building construction, material selection for sustainable design, green building certification, Methods for increasing energy efficiency of buildings. Sustainable cities, Sustainable transport.	L5		
	Students may be assigned to do at least one project eg: a) Consider the design aspects of a sustainable building for your campus b) Explore the different methods that can be adopted for maintaining a sustainable transport system in your city.	P2	13%	
	SECOND INTERNAL EXAM			
v	Energy sources: Basic concepts-Conventional and non-conventional, solar energy, Fuel cells, Wind energy, Small hydro plants, bio-fuels, Energy derived from oceans, Geothermal energy.	L5		
	Students may be assigned to do at least one project eg: a) Find out the energy savings that can be achieved by the installation of a solar water heater b) Conduct a feasibility study for the installation of wind mills in Kerala	P2 20%		
VI	Green Engineering, Sustainable Urbanisation, industrialisation and poverty reduction; Social and technological change, Industrial Processes: Material selection, Pollution Prevention, Industrial Ecology, Industrial symbiosis.	L.5		
	Students may be assigned to do a group project eg: a) Collect details for instances of climate change in your locality b) Find out the carbon credits you can gain by using a sustainable transport system (travelling in a cycle or car pooling from college to home) c) Have a debate on the topics like: Industrial Ecology is a Boon or Bane for Industries?/Are we scaring the people on Climate Change unnecessarily?/Technology enables Development sustainable or the root cause of unsustainability?	Р3	20%	
	END SEMESTER EXAM			

2014

Course No.	Course Name	L-T-P-Credits	Year of Introduction			
CE230	MATERIAL TESTING LAB	0-0-3-1	2016			
Course Objectives	:					
1. To provide kno	wledge on mechanical behaviour of materi	als				
2. To acquaint wit	h the experimental methods to determine th	e mechanical proper	ties of materials.			
Syllabus	A DI A DI VIII E	ZATAN	A.			
List of experiment	am addul i	ALAN	1			
1 Tension tes	t on mild steel / tor-steel / high strength stee	and cast iron using	Universal Testing			
1. Tension tes Machine ar	ad extensometers	and cast non using	Oniversal resting			
2 Tests on sn	rings (Open and closed coiled)	T+V/				
3 Torsion per	ndulum (mild steel aluminium and brass w	ires)				
4. Hardness te	est (Brinell, Vickers and Rockwell)	nes)				
5. Impact test	(Izod and Charpy)					
6. Torsion tes	t on mild steel rods.					
7. Shear test o	on mild steel rods.					
8. Fatigue tes	t – Study of testing machine.					
9. Bending te	st on wooden beams.					
10. Strut test (C	Column buckling experiment)					
11. Verification	n of Clerk Maxwell's law of reciprocal defle	ection and determina	tion of Young's modulus			
of steel.			-			
12. Photo elast	ic methods for stress measurements.					
13. Jominy har	denability test					
14. Measurem	ent using strain gauges					
15. Determinat	tion of moment of inertia of rotating bodies					
Note: A minimum of	f 10 experiments are mandatory.					
Expected outcome	• At the end of the course the students will	be able to				
1 A equire the l	nowledge on mechanical behaviour of mat	orials				
1. Acquire the knowledge on mechanical behaviour of materials						
2. Conduct experiments determine the mechanical properties of materials.						
References Books:						
1. G E Dieter. Mechanical Metallurgy, McGraw Hill, 2013						
2. Dally J W,	Railey W P, Experimental Stress analysis,	McGarw Hill,1991				
3. Baldev Raj	, Jayakumar T, Thavasimuthu M., Practical	Non destructive test	ing, Narosa Book			
Distributor	s 2015					

C	ourse	Course Name	L-T-P-	Year of				
	No.		Credits	Introduction				
EE110		ELECTRICAL ENGINEERING WORKSHOP	0-0-2-1	2016				
Co	Course Objectives							
The	e objectiv	e of this course is to familiarize the stude	ents with commo	only used components,				
acc	essories a	nd measuring equipment in Electrical instal	lations. The cour	se also provides hands				
on	experienc	e in setting up of simple wiring circuits.	VOIC	A T				
		List of Exercises / Experiments (Mini	mum of 8 mand:	atory)				
1.	Identify	different types of cables/wires and switches	and their uses.					
2.	Identify	different types of fuses & fuse carriers, MCI	3 and ELCB, MC	CB with ratings and				
	usage.							
3.	Wiring o	of simple light circuit for controlling light/far	n point (PVC con	duit wiring).				
4.	Wiring o	of light/fan circuit using Two way switches (Staircase wiring)					
5.	Wiring o	of fluorescent lamps and light sockets (6 A)						
6.	Wiring o	of Power circuit for controlling power device	(16A socket)					
7.	Godown	wiring / Tunnel wiring						
8.	Wiring of ELCB, N	of power distribution arrangement using sing Main switch and Energy meter.	le phase MCB di	stribution board with				
9.	Measure and watt	ment of voltage, current and power in single meter. Calculate the power factor of the circ	phase circuit usi uit.	ng voltmeter, ammeter				
10.	Wiring o installati	of backup power supply including inverter, b ons.	attery and load fo	or domestic				
11.	Demons	tration and measurement of power consumpt	ion of electric iro	on, mixer grinder,				
12.	Energy r	neter reading and tariff calculation td.						
Ex	pected ou	tcome		/				
1.	Familiar	ity with supply arrangements and their limita	ations, knowledge	e of standard				
	voltages and their tolerances, safety aspects of electrical systems and importance of protective measures in wiring systems.							
2.	2. Knowledge about the types of wires, cables and other accessories used in wiring. Creating awareness of energy conservation in electrical systems.							
3.	3. Students should be able to wire simple lighting circuits for domestic buildings, distinguish between light and power circuits.							
4.	To meas	ure electrical circuit parameters and current,	voltage and pow	er in a circuit.				
5.	Familiar	ity with backup power supply in domestic in	stallation.					

Course code.	Course Name	L-T-P - Credits	Y Intr	ear of
EE31	ELECTRICAL DRIVES & CONTROL FOR AUTOMATION	3-0-0-3		2016
Prerequisi	te : Nil			
Course O	bjectives			
1. To	understand the basic concepts of different types of electrical i	nachines	and the	eir
pe	rformance.	6 N.A.		
2. To	know the different methods of starting D.C motors and induc	tion moto	ors.	
3. To	introduce the controllers for automation	20 1		
•		A		
Syllabus	I LOT HINGLOUIC	I Whee		
DC Mac	hines, transformers, three phase induction motor, single phase	inductio	on moto	r, stepper
motor, co	ontrollers for automation.			
Expecte	d outcome .			
The stude	nts will be able to			
1. Se	lect a drive for a particular application based on power rating.			
2. Se	lect a drive based on mechanical characteristics for a particula	r drive ap	oplication	on.
3. Di	scuss the controllers used for automation			
Text Bo	oks:			
1. Ko	othari D. P. and I. J. Nagrath, Electrical Machines, Tata McGra	ıw Hill, 2	2004.	
2. Na	grath .I.J. & Kothari .D.P, Electrical Machines, Tata McGraw	-Hill, 199	98	
3. Ri	chard Crowder, Electrical Drives and Electromechanical syste	ms, Elsev	vier, 201	13
4. M	ehta V. K. and R. Mehta, Principles of Electrical and Electroni	.cs, S. Ch	and & \mathbf{C}	Company
Lt	d., 1996.			
5. Th	eraja B. L. and A. K. Theraja, A Text Book of Electrical Tech	nology, S	S. Chan	d &
Co	ompany Ltd., 2008.	\ —		
6. Ve	edam Subrahmaniam, Electric Drives (concepts and application	ns), Tata	McGrav	w- Hill,
20	01			
Referen	ces:			100.4
I. H.	Partab, Art and Science and Utilisation of electrical energy, D	hanpat R	and S	ons, 1994
2. M	D.Singh, K. B. Khanchandani, Power Electronics, Tata McG	raw-Hill,	1998	
3. Pi	liai.S,K A first course on Electric drives, whey Eastern Limite	a, 1998		
	Course Dien			
	Course Fian			Som
Module	Contents	1	Hours	Sem. Exam
mouule	contents		liouis	Marks
	DC Machines-principle of operation-emf equation-types	s of		
т	excitations. Separately excited, shunt and series excited	DC	6	15%
L	generators, compound generators. General idea of armature rea	ction,	0	1570
	OCC and load characteristics - simple numerical problems.			
	Principles of DC motors-torque and speed equations-torque	speed		
тт	characteristics- variations of speed, torque and power with i	notor	6	150/
11	Principles of starting losses and efficiency load test of	otors.	0	13%
	numerical problems	mpie		
	FIRST INTERNAL EXAMINATION	I		
ш	Transformers _ principles of operations _ amf aquation vector		7	1504
111	-11 ansignments – principles of operations – chill equation- vector	1	1	1.170

	diagrams- losses and efficiency – OC and SC tests. Equivalent circuits-		
	efficiency calculations- maximum efficiency – all day efficiency –		
	simple numerical problems. Auto transformers constant voltage		
	transformer- instrument transformers.		
	Three phase induction motors- slip ring and squirrel cage types-		15%
137	principles of operation – rotating magnetic field- torque slip		
1 V	characteristics- no load and blocked rotor tests. Circle diagrams-	7	
	methods of starting – direct online – auto transformer starting		
	SECOND INTERNAL EXAMINATION		
	Single phase motors- principle of operation of single phase induction	4	20%
	motor – split phase motor – capacitor start motor- stepper motor-		
• 7	universal motor Synchronous machines types – emf equation of	0	
V	alternator – regulation of alternator by emf method. Principles of	8	
	operation of synchronous motors- methods of starting- V curves-		
	synchronous condenser		
	Stepper motors: Principle of operation, multistack variable reluctance		20%
	motors, single-stack variable reluctance motors, Hybrid stepper motors,		
	Linear stepper motor, comparison, Torque-speed characteristics,		
	control of stepper motors		
VI	Controllers for automation, servo control, Digital controllers,	8	
	Advanced control systems, Digital signal processors, motor controllers,		
	Axis controllers, Machine tool controllers, Programmable Logic		
	Controllers		

END SEMESTER EXAM

QUESTION PAPER PATTERN:

Maximum marks: 100

Time: 3 hrs

The question paper should consist of three parts

Part A

There should be 2 questions each from module I and II

Each question carries 10 marks

Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part B

There should be 2 questions each from module III and IV Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part C

There should be 3 questions each from module V and VI Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

Note: in all parts each question can have a maximum of four sub questions

Course co	ode	Course Name	L-T-P - Credit	S _	Year of		
TIC200			2002	Int	roduction		
H\$300	•	Principles of Management	3-0-0-3		2016		
Prerequis							
Course Objectives							
• 10	• To develop ability to critically analyse and evaluate a variety of management practices in						
		lengthered and apply a variety of management	and organisational	theories in	n practica:		
• 10 • To	be	able to mirror existing practices or to general	te their own innov	ative mana	r practice,		
• 10	mne	tencies required for today's complex and gl	obal workplace		igement		
• To	he	able to critically reflect on ethical theories a	nd social responsib	vility ideol	ogies to		
cre	ate	sustainable organisations	nd social responsit		ogies to		
Syllabus	uic		a management				
Definition	ro	es and functions of a manager manageme	ent and its science	and art p	erspectives		
manageme	ent	challenges and the concepts like, compe	titive advantage.	entreprene	eurship and		
innovation	n. E	arly contributors and their contributions t	to the field of ma	anagement	. Corporate		
Social R	espo	nsibility. Planning, Organizing, Staffing	g and HRD fun	ctions, Le	eading and		
Controllin	g.	Decision making under certainty, uncert	tainty and risk,	creative p	rocess and		
innovation	i inv	olved in decision making.	•				
Expected	d ou	tcome.					
A studen	t wł	o has undergone this course would be able t	to				
	i.	manage people and organisations					
i	i.	critically analyse and evaluate managemen	t theories and prac	tices			
ii	i.	plan and make decisions for organisations	CIN				
iv	<i>'</i> .	do staffing and related HRD functions	5.11				
Text Boo	ok:						
Harold K	loon	tz and Heinz Weihrich, Essentials of Manag	gement, McGraw H	Iill Compa	nies, 10th		
Edition.							
Referen	ces:		<u> </u>				
	1.	Daft, New era Management, 11th Edition,	Cengage Learning	, a			
	2.	Griffin, Management Principles and Applie	cations, 10th Edition	on, Cengag	ge Learning		
	3.	Heinz Weirich, Mark V Cannice and Harol	d Koontz, <i>Manage</i>	ement: a G	lobal,		
	4	Innovative and Entrepreneurial Perspectiv	e, McGraw Hill Ed	lucation, I	4th Edition		
	4. 5	Peter F Drucker, <i>The Practice of Managem</i>	dition 2016 Deere	New York			
	Э.	Robbins and Coulter, Management, 15th E	altion, 2016, Pears	on Educat	lon		
		Course ria			Som Exam		
Module		Contents		Hours	Marks		
		2014					
	Int	roduction to Management: definitions, man	agerial roles and				
	fur	actions; Science or Art perspectives- Exter	nal environment-				
Ι	glo	bal, innovative and entrepreneurial	perspectives of				
	Ma	magement (3 Hrs.)– Managing people and	organizations in	6			
	the	context of New Era- Managing for compe	titive advantage -				
	the	Challenges of Management (3 Hrs.)			15%		

	Early Contributions and Ethics in Management: Scientific		
	Management- contributions of Taylor, Gilbreths, Human		
	Relations approach-contributions of Mayo, McGregor's		
II	Theory, Ouchi's Theory Z (3 Hrs.) Systems Approach, the		
	Contingency Approach, the Mckinsey 7-S Framework		
	Corporate Social responsibility- Managerial Ethics. (3 Hrs)		
		6	15%
	FIRST INTERNAL EXAMINATION		
	ADI ARIMI KALAN	1	
тт	Planning: Nature and importance of planning, -types of plans	V.1	
111	(3 Hrs.)- Steps in planning, Levels of planning - The Planning	6	15%
	Process. – MBO (3 Hrs.).	and the second s	
	Organising for decision making: Nature of organizing,		
	organization levels and span of control in management		
	Organisational design and structure –departmentation, line and		
IV	staff concepts (3 Hrs.) Limitations of decision making-		
	Evaluation and selecting from alternatives- programmed and	6	15%
	non programmed decisions - decision under certainty,		
	uncertainty and risk-creative process and innovation (3 Hrs.)		
	SECOND INTERNAL EXAMINATION		
	Staffing and related HRD Functions: definition,		
	Empowerment, staff – delegation, decentralization and		
	recentralisation of authority – Effective Organizing and		
V	culture-responsive organizations –Global and entrepreneurial		
•	organizing (3 Hrs.) Manager inventory chart-matching person	9	20%
	with the job-system approach to selection (3 Hrs.) Job design-		
	skills and personal characteristics needed in managers-		
	selection process, techniques and instruments (3 Hrs.)		
	Leading and Controlling: Leading Vs Managing – Trait		
	approach and Contingency approaches to leadership -	11	
	Dimensions of Leadership (3 Hrs.) - Leadership Behavior and	6	
VI	styles – Transactional and Transformational Leadership (3		
	Hrs.) Basic control process- control as a feedback system –	9	20%
	Feed Forward Control – Requirements for effective control –		
	control techniques – Overall controls and preventive controls –		
	Global controlling (3 Hrs.)		
	END SEMESTER EXAM		

Question Paper Pattern

Max. marks: 100, Time: 3 hours . The question paper shall consist of three parts

Part A: 4 questions uniformly covering modules I and II. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks =30 marks)
Part B: 4 questions uniformly covering modules III and IV. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks =30 marks)
Part C: 6 questions uniformly covering modules V and VI. Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

Note: In all parts, each question can have a maximum of four sub questions, if needed.

Course No.	Course Name	L-T-P-Credits	Year of Introduction
CE100	BASICS OF CIVIL ENGINEERING	2-1-0-3	2016
Course Objec	tives		

- To inculcate the essentials of Civil Engineering field to the students of all branches of Engineering.
- To provide the students an illustration of the significance of the Civil Engineering Profession in satisfying societal needs.

Syllabus

General introduction to Civil Engineering - Introduction to types of buildings, Components of a residential building, Introduction to industrial buildings; Introduction to planning of residential buildings - Simple building plans; Introduction to the various building area terms; Setting out of a building; Surveying - Principles, Objectives, Horizontal measurements with tapes, Ranging; Levelling - Instruments, Reduction of levels; Modern surveying instruments; Building materials - Bricks, cement blocks, Cement, Cement mortar, Steel; Building construction - Foundations, Brick masonry, Roofs, Floors, Decorative finishes, Plastering, Paints and Painting; Basic infrastructure and services - Elevators, Escalators, Ramps, Air conditioning, Sound proofing, Towers, Chimneys, Water Tanks; Intelligent buildings.

Expected outcome

- 1. The students will be able to illustrate the fundamental aspects of Civil Engineering.
- 2. The students will be able to plan and set out a building.
- Students will be able to explain the concepts of surveying for making horizontal and vertical measurements.
- They will able to illustrate the uses of various building materials and explain the method of construction of different components of a building.
- 5. Students will be able to discuss about various services in a building.

References Books:

- · Chudley, R., Construction Technology, Vol. I to IV, Longman Group, England
- Chudley, R. and Greeno, R., Building Construction Handbook, Addison Wesley, Longman Group, England
- · Gopi, S., Basic Civil Engineering, Pearson Publishers
- · Kandya, A. A., Elements of Civil Engineering, Charotar Publishing house
- Mamlouk, M. S., and Zaniewski, J. P., Materials for Civil and Construction Engineering, Pearson Publishers

38

 McKay, W. B. and McKay, J. K., Building Construction Volumes 1 to 4, Pearson India Education Services

- Minu, S., Basic Civil Engineering, Karunya Publications
- · Rangwala, S. C., Essentials of Civil Engineering, Charotar Publishing House

-

- Rangwala, S. C. and Dalal, K. B., Engineering Materials, Charotar Publishing house
- Rangwala, S. C. and Dalal, K. B., Building Construction, Charotar Publishing house

	Course Pian		
Module	ECH Contents	Hours	Sem. Exam Marks
1	General Introduction to Civil Engineering - Various disciplines of Civil engineering, Relevance of Civil engineering in the overall infrastructural development of the country.	2	
	Introduction to types of buildings as per NBC; Selection of site for buildings.	2	
	Components of a residential building and their functions. Introduction to industrial buildings – office / factory / software development office / power house /electronic equipment service centre (any one related to the branch of study)	2	15%
	Students have to visit one such building and submit an assignment about the features of any one of the listed building related to their branch (Not included for exam).	1	
п	Building planning - Introduction to planning of residential buildings- Site plan, Orientation of a building, Open space requirements, Position of doors and windows, Size of rooms; Preparation of a scaled sketch of the plan of a single storeyed residential building in a given site plan.	4	15%
	Introduction to the various building area terms - Computation of plinth area / built up area, Floor area / carpet area - for a simple single storeyed building; Setting out of a building.	3	
	FIRST INTERNAL EXAM		
ш	Surveying - Principles and objectives of surveying;	1	
	Horizontal measurements – instruments used – tape, types of tapes; Ranging (direct ranging only) – instruments used for ranging.	3	
	Levelling - Definitions, principles, Instruments (brief discussion only) - Level field book - Reduction of levels - problems on levelling (height of collimation only).	3	15%
	Modern surveying instruments - Electronic distance meter, digital level, total station, GPS (Brief discussion only).	- 1	1
IV	Building materials - Bricks, cement blocks - Properties and specifications.	2	15%

	Cement – OPC, properties, grades; other types of cement and its uses (in	1	
	brief).	1	
	Cement mortar – constituents, preparation.	1	
	Concrete – PCC and RCC – grades.	1	
	Steel - Use of steel in building construction, types and market forms.	1	
	SECOND INTERNAL EXAM		
V	Building construction – Foundations; Bearing capacity of soil (definition	2	
	only); Functions of foundations, Types - shallow and deep (sketches only).	2	
	Brick masonry – header and stretcher bond, English bonds – Elevation and	2	
	plan (one brick thick walls only).	Z	
	Roofs – functions, types, roofing materials (brief discussion only).	1	20%
	Floors – functions, types; flooring materials (brief discussion only).	1	
	Decorative finishes – Plastering – Purpose, procedure.	1	
	Paints and Painting – Purpose, types, preparation of surfaces for painting	2	
	(brief discussion only).	Z	
VI	Basic infrastructure and services - Elevators, escalators, ramps, air	2	
	conditioning, sound proofing (Civil engineering aspects only)	2	20%
	Towers, Chimneys, Water tanks (brief discussion only).	1	2070
	Concept of intelligent buildings.	2	
	END SEME <mark>S</mark> TER EXAM		

40

Course No:	Course Name	L-T-P Credits	Year of Introduction
EC100	BASICS OF ELECTRONICS ENGINEERING	2-1-0-3	2016
Course O	bjectives		
1) To g	get basic idea about types, specification and com	imon values	of passive and active

- 2) To familiarize the working of diodes, transistors, MOSFETS and integrated circuits.
- 3) To understand the working of rectifiers, amplifiers and oscillators.
- 4) To get a basic idea about measuring instruments
- 5) To get a fundamental idea of basic communication systems and entertainment electronics

Syllabus

components.

Evolution and Impact of Electronics in industries and in society, Familiarization of Resistors, Capacitors, Inductors, Transformers and Electro mechanical components, PN Junction diode: Structure, Principle of operation, Zener diode, Photo diode, LED, Solar cell, Bipolar Junction Transistors: Structure, Principle of operation, characteristics, Rectifiers and power supplies: Half wave and full wave rectifier, capacitor filter, zener voltage regulator, Amplifiers and Oscillators: common emitter amplifier, feedback, oscillators, RC phase shift oscillator, Analogue Integrated circuits: operational amplifier, inverting and non-inverting amplifier, Electronic Instrumentation: digital multimeter, digital storage oscilloscope, function generator, Radio communication: principle of AM & FM, Super heterodyne receiver, Satellite communication: geo-stationary satellite system, Mobile communication: cellular communications, Optical communication: system, principle of light transmission through fiber, Entertainment Electronics: Cable TV, CCTV system.

Expected Outcome

Student can identify the active and passive electronic components. Student can setup simple circuits using diodes and transistors. Student will get fundamental idea about basic communication systems and entertainment electronics.

Text Books:

- Bell, D. A., Electronic Devices and Circuits, Oxford University Press
- Tomasy, W., Advanced Electronic Communication system, PHI Publishers

References Books:

- Boylested, R. L. and Nashelsky, L., Electronic Devices and Circuit Theory, Pearson Education
- Frenzel, L. E., Principles of Electronic Communication Systems, Mc Graw Hill
- Kennedy, G. and Davis, B., Electronic Communication Systems, Mc Graw Hill

Rajendra Prasad, Fundamentals of Electronic Engineering, Cengage Learning				
Course Plan				
Module	Contents	Hours	Sem. Marks	
I	 Evolution of Electronics, Impact of Electronics in industry and in society. Resistors, Capacitors: types, specifications. Standard values, marking, colour coding. Inductors and Transformers: types, specifications, Principle of working. Electro mechanical components: relays and contactors. 	$\frac{1}{4}$	10%	
II	 PN Junction diode: Intrinsic and extrinsic semiconductors, Principle of operation, V-I characteristics, principle of working of Zener diode, Photo diode, LED and Solar cell. Bipolar Junction Transistors: PNP and NPN structures, Principle of operation, input and output characteristics of common emitter configuration (npn only). 	4	20%	
	FIRST INTERNAL EXAM	M		
	Rectifiers and power supplies: Block diagram description of a dc power supply ,Half wave and full wave (including bridge) rectifier, capacitor filter, working of simple zener voltage regulator.	4	150/	
111	Amplifiers and Oscillators: Circuit diagram and working of common emitter amplifier, Block diagram of Public Address system, concepts of feedback, working principles of oscillators, circuit diagram & working of RC phase shift oscillator.	4	13%	
IV	Analogue Integrated circuits: Functional block diagram of operational amplifier, ideal operational amplifier, inverting and non-inverting Amplifier.	3	15%	
	Digital ICs: Logic Gates.	1		
	Electronic Instrumentation: Principle and block diagram of digital multimeter, digital storage	2		

	oscilloscope, and function generator.	
	SECOND INTERNAL EXAM	
V	Radio communication: principle of AM & FM, frequency bands used for various communication systems, block diagram of super heterodyne receiver. Satellite communication: concept of geo- stationary Satellite system.	
VI	Mobile communication: basic principles of cellular communications, concepts of cells, frequency reuse.2Optical communication: block diagram of the optical communication system, principle of light transmission through fiber, advantages of optical communication systems.220%Entertainment Electronics Technology: Basic principles and block diagram of cable TV, CCTV, DTH system.22	
	END SEMESTER EXAM	

Note: Analysis is not required in this course.

2014

Course No:	Course Name	L-T-P Credits	Year of Introduction
BE101-02	INTRODUCTION TO MECHANICAL ENGINEERING SCIENCES	2-1-0-3	2016
Course Obje	ectives		
1. To in	troduce different disciplines of Mechanical En	gineering	N A
2. To kin	ndle interest in Mechanical Engineering	KALA	MI.
$\frac{3.}{1000}$ To im	part basic mechanical engineering principles	NOIC	A
Syllabus	LECHNOLU	NIL.	AL.
Thermodynam Automobile a	mics & Power sources, Thermal Engineering, & Aeronautical Engineering, Engineering Mat	Refrigeration and erials and manufa	Air Conditioning, cturing.
Expected Ou	tcome		
At the end of Engineering;	the course, the students will have exposed to the gained idea about nature, scope and applications	different areas of of Mechanical En	Mechanical gineering principles.
References I	Books:		
• D	ossat, R. J., Principles of Refrigeration, PHI		
• H	eywood, J., Internal Combustion Engine Fund	amentals, McGrav	w Hill Publishers
• H	olman, J. P., Thermodynamics, McGraw Hill	Co. 5	
• Ja	in, K. K. and Asthana, R. B., Automobile Eng	incering, TTTI Bl	nopal
• Jo	onathan Wickert, Introduction to Mechanical E	ngineering, Ceng	age Learning
• K M	alpakjian, S. and Schmid, S. R., Manufa laterials, Pearson education	cturing Processe	s for Engineering
• M	laines, R., Landmarks in Mechanical Engineer	ing, ASME	
• Pe	eng, W. <mark>W., Principles of Tur</mark> bomachinery, Jol	nn Wiley & Sons	
• Pi	ita, E. G., Air Conditioning Principles & Syste	ms, PHI.	
• SI A	palding, D. B. and Cole, E. H., Engineerin rnold (Pub) Ltd.	g Thermodynami	cs, ELBS & Edward
• St	tone, R. and Ball, T. K., Automotive Engineeri	ng <mark>Fundament</mark> als	, SAE International
• Sı	utton, G. P. and Ross, D. M., Rocket Propulsic	n Elements, John	Wiley & Sons
• V H	on Karman, T., Aerodynamics: Selected T istorical Development, Courier Corporation	Copics in the Li	ght of Their
• 0	nline course on Refrigeration & Air condition	ing, IIT Kharagpu	r <u>www.nptel.ac.in</u>

21

	Course Plan		
Module	Contents	Hours	Sem. Exam Marks
1	Thermodynamics: Nature and scope of thermodynamics; Basic concepts ; Laws of thermodynamics- Discovery, Significance & Applications; Qualitative ideas on Entropy, Available energy, Irreversibility, Principle of increase of entropy & Carnot engine; Limitations of Thermodynamics; Sources of power; history of power production; power production in the future.	8	15%
n	Thermal Engineering: Historical development of steam engine, steam turbines, gas turbines and hydraulic turbines; Principle of turbomachinery; History of IC engines; two stroke and four stroke engines-working, applications; Air compressors- types and uses; Principles of Rocket propulsion, chemical rockets, Indian space programme	8	15%
	FIRST INTERNAL EXAM		
ш	Refrigeration & Air Conditioning: History & scope of refrigeration; applications of refrigeration; Food preservation, refrigerated storage; applications in chemical and process industries; special applications; Air conditioning- Principles & systems; scope of air conditioning, Psychrometric properties of air; Human comfort; comfort standards.	7	15%
IV	Automobile & Aeronautical Engineering: Introduction to an Automobile; history of the automobile; Indian Automobiles; Types of automobiles; Major components and their functions; Manufacturers of motor vehicles in India; Fundamentals of aerodynamics; drag force and lift force; jet engines types and applications.	7	15%
	SECOND INTERNAL EXAM		
v	Engineering Materials: Introduction and history of materials; Basic crystallography; metals, alloys, composites, ceramics, polymers; mechanical properties and testing of engineering materials.	5	20%
VI	Manufacturing Engineering :	7	20%

22

Methods of manufacturing; casting, forging, rolling, extrusion; machining operations – turning, milling, drilling, grinding, shaping, planing; Joining operations – soldering, brazing & welding; Introduction to CNC machines(elementary idea only); examples of typical products manufactured by above methods.

END SEMESTER EXAM

Question Paper Pattern:

Part A: Modules I and II – three questions of 15 marks each – out of which two questions are to be answered.

Part B: Modules III and IV – three questions of 15 marks each – out of which two questions are to be answered.

Part C: Modules V and VI – three questions of 20 marks each – out of which two questions are to be answered.

-std

2014

Each question can have maximum of four subdivisions (a,b,c,d)

Course No:	Course Name	L-T-P Credits	Year of Introduction		
BE110	*ENGINEERING GRAPHICS	1-1-3-3	2016		
*As this course is	practical oriented, the evaluation is diff	ferent from other lec	ture based courses.		
Points to note:	Points to note: API ABDUL KALAM				
(1) End seme	ster examination will be for 50 marks and	of 3 hour duration.	AL.		
(2) End seme	ster exam will include all modules except	Module IV.	Contraction of the second s		
(3) 100 marks marks(CA	s are allotted for internal evaluation: first D Lab Practice) and class exercises 20 m	internal exam 40 ma arks.	arks, second internal exam 40		
(4) The first practical of end of the	(4) The first internal exam will be based on modules I and II and the second internal exam will be a practical exam in CAD based on Module IV alone. Second internal exam may be conducted at the end of the semester.				
Course Objective	es	5 1 5	5.1		
To enable the stuc per standards.	lent to effectively communicate basic o	designs through gra	phical representations as		
Syllabus	KIUNG	1 1			
Introduction to Er projection, Freeha Perspective projec	Introduction to Engineering Graphics; Orthographic projections of lines and solids, Isometric projection, Freehand sketching, Introduction to CAD, Sections of solids, Development of surfaces, Perspective projection.				
Expected outcom	ne Esto		1		
Upon successful c abilities and skills	Upon successful completion of this course, the student would have accomplished the following abilities and skills:				
1. Fundamenta	1. Fundamental Engineering Drawing Standards.				
2. Dimensionin	ng and preparation of neat drawings an	d drawing sheets.			
3. Interpretatio	3. Interpretation of engineering drawings				
4. The features	of CAD software				

References Books:

- Agrawal, B. and Agrawal, C. M., Engineering Drawing, Tata McGraw Hill Publishers
- Anilkumar, K. N., Engineering Graphics, Adhyuth Narayan Publishers
- Benjamin, J., Engineering Graphics, Pentex Publishers
- Bhatt, N., D., Engineering Drawing, Charotar Publishing House Pvt Ltd.
- Duff, J. M. and Ross, W. A., Engineering Design and Visualization, Cengage Learning, 2009
- John, K. C., Engineering Graphics, Prentice Hall India Publishers
- Kirstie Plantenberg, Engineering Graphics Essentials with AutoCAD 2016 Instruction, 4th Ed., SDC Publications
- Kulkarni, D. M., Rastogi, A. P. and Sarkar, A. K., Engineering Graphics with AutoCAD, PHI 2009
- Luzadder, W. J. and Duff, J. M., Fundamentals of Engineering Drawing, PHI 1993
- Parthasarathy, N. S., and Murali, V., Engineering Drawing, Oxford University Press
- Varghese, P. I., Engineering Graphics, V I P Publishers
- Venugopal, K., Engineering Drawing & Graphics, New Age International Publishers
 Course Plan

Module	Contents	Hours	Sem. Exam Marks
	6 exercises		
	Introduction to Engineering Graphics: Need for engineering	1	
I	drawing.	14	20%
	Drawing instruments; BIS code of practice for general	15	
	engineering drawing.	1	
	Orthographic projections of points and lines:-Projections of		
	points in different quadrants; Projections of straight lines		
	inclined to one of the reference planes, straight lines		
	inclined to both the planes; True length and inclination of		
	lines with reference planes; Traces of lines.		

	12 exercises		
Ξ	Orthographic projections of solids:-Projections of simple solids* in simple positions, projections of solids with axis inclined to one of the reference planes and axis inclined to both the reference planes.	11	20%
	FIRST INTERNAL EXAM	LAN	1
	12 exercises Isometric Projections:-Isometric projections and views of plane figures simple* and truncated simple* solids in simple position including sphere and hemisphere and their	CAI Y	
111	combinations. Freehand sketching: Freehand sketching of real objects, conversion of pictorial views into orthographic views and vice versa.	09	20%
IV	6 exercises Introduction to Computer Aided Drafting - familiarizing various coordinate systems and commands used in any standard drafting software - drawing of lines, circle, polygon, arc, ellipse, etc. Creating 2D drawings. Transformations: move, copy, rotate, scale, mirror, offset and array, trim, extend, fillet, chamfer. Dimensioning and text editing. Exercises on basic drafting principles, to create technical drawings. Creation of orthographic views of simple solids from pictorial views. Creation of isometric views of simple solids from orthographic views. Solid modelling and sectioning of solids, extraction of 2D drawings from solid models. (For internal examination only, not for University Examination).	15 (Additional hours are allotted in U slot for CAD practice)	Internal
	SECOND INTERNAL EXAM (to be conducted only after fin	ishing CAD Pra	ctice.)
v	9 exercises Sections and developments of solids: - Sections of simple* solids in simple vertical positions with section plane inclined to one of the reference planes - True shapes of sections. Developments of surfaces of these solids.	12	20%

	6 exercises		
VI	Intersection of surfaces: - Intersection of prism in prism and cylinder in cylinder - axis bisecting at right angles only. Perspective projections: - perspective projections of simple* solids.	09	20%
*Tr cyli	riangular, square, pentagonal and hexagonal prisms, pyramids, c inders.	cones and	
	END SEMESTER EXAM	Y	

Note:

- 1. First angle projection is to be followed.
- 2. CAD Practice is mandatory and shall be conducted in the time slot allotted for U slot in addition to 15 hours allotted for Module IV

Question Paper Pattern: Question Paper shall contain eight questions of 10 marks each out of which five questions are to be answered as explained below. The duration of examination is 3 hours.

Part A: Three questions from Modules I & II out of which two are to be answered.

Part B: Five questions from Modules III, V & VI out of which three are to be answered.

The questions are to be answered in A4 size booklet containing grid/plain sheets supplied by the university. Drawing sheets are not needed.

The evaluation of answers shall be based on the correctness of solution, judging the knowledge of student in concepts and principles of Engineering Graphics. Accuracy and neatness shall not be criteria for evaluation. 2014

Course No.	Course Name	L-T-P Credits	Year of Introduction		
EE100	BASICS OF ELECTRICAL ENGINEERING	2-1-0-3	2016		
Course O	bjectives				
To impart a	basic knowledge in Electrical Engineering	with an understa	nding of fundamental concepts.		
Syllabus	ALLADEO	LINA	LAIVI		
Elementary concepts of electric circuits, Kirchhoff's laws, constant voltage and current sources, Matrix representation; Magnetic circuits, energy stored in magnetic circuits, Electromagnetic induction, Alternating current fundamentals; AC circuits, phasor representation of alternating quantities- rectangular, polar; Three phase systems, star and delta connection; Generation of power, power transmission and distribution; Transformers, Electric Machines, DC Machines, AC Motors					
Expected	Expected outcome				
The course	e will enable the students to gain preliminary	y knowledge in l	pasic concepts of Electrical		
Engineerin	ig.				
Reference	s Books:				
•	Bhattacharya, S. K., Basic Electrical & Ele	ectronics Engine	ering, Pearson		
•	Bird, J., Electrical Circuit Theory and Tech	nnology, Routled	lge, Taylor & Francis Group		
•	Del Toro, V., Electrical Engineering Fundan	nentals, Prentice	Hall of India.		
•	Hayt, W. H., Kemmerly, J. E., and Durbi Tata McGraw Hill	in, S. M., Engir	neering Circuit Analysis,		
	Hughes, Electrical and Electronic Technologies	ogy, Pearson Ed	ucation		
•Mehta, V.K. and Mehta, R., Basic Electrical Engineering, S. Chand Publishing					
•Parker and Smith, Problems in Electrical Engineering, CBS Publishers and Distributors					
	•Sudhakar and Syam Mohan, Circuits and Networks Analysis and Synthesis, Tata McGraw Hill				
•	Suresh Kumar, K. S, Electric Circuits and I	Networks, Pears	on Education		

Course Plan

Module	Contents 2014	Hours	Sem. Exam. Marks
	Elementary concepts of electric circuits: Kirchhoff's laws, constant voltage and current sources-Problems	2	
Ι	Formation of network equations by mesh current and node voltage methods-matrix representation-solution of network equations by matrix methods-problems	3	15%
	star-delta conversion(resistive networks only-derivation is not needed)-problems	1	

Π	Magnetic Circuits: MMF, field strength, flux density, reluctance(definition only)-comparison between electric and magnetic circuitsEnergy stored in magnetic circuits, magnetic circuits with air gap-Numerical problems on series magnetic circuitsElectromagnetic Induction: Faraday's laws, lenz's laws- statically induced and dynamically induced emfs-self inductance and mutual inductance, coefficient of coupling (derivation not needed)	2 2 2 2	15%
	FIRST INTERNAL EXAMINATION	AL	
	Alternating Current fundamentals: Generation of alternating voltages-waveforms, frequency, period, average, RMS values and form factor of periodic waveform(pure sinusoidal)- Numerical Problems	2	
	AC Circuits: Phasor representation of alternating quantities- rectangular and polar representation	1	15%
III	Analysis of simple AC circuits: concept of impedance, power and power factor in ac circuits-active, reactive and apparent power	2	
	solution of RL,RC and RLC series circuits-Numerical problems	2	
	Three phase systems: Generation of three phase voltages- advantages of three phase systems, star and delta connection (balanced only), relation between line and phase voltages, line and phase currents	3	
	three phase power measurement by two wattmeter method (derivation is not required) - Numerical problems	1	
	Generation of power: Block schematic representation of generating stations- hydroelectric power plants	1	
	Block schematic representation of Thermal and nuclear power plants	1	
IV	Renewable energy sources: solar, wind, tidal and geothermal (Block diagram and working only- No Problems)	1	15%
	Power transmission: Typical electrical power transmission scheme-need for high voltage transmission-(Derivation is not needed, No Problems)	1	
	Power Distribution: substation equipments, primary and secondary transmission and distribution systems- feeder, service	1	

	mains		
	SECOND INTERNAL EXAMINATION		
	Electric Machines: DC Generator and Motor-Construction- working principle- Back EMF	2	
V	Types of motor-shunt, series, compound (short and long)- principle of operation of dc motor, applications-numerical problems (voltage -current relations only)	A ₃ M	209/
v	Transformer: Construction of single phase and three phase Transformers (core type only)-EMF equation and related numerical problems	2	20%
	Losses and efficiency of transformer for full load –numerical problems (no equivalent circuit)	2	
	AC Motors: Three phase induction motor-squirrel cage and slip ring induction motor	1	
VI	Working principle-synchronous speed, slip and related numerical problems. (no equivalent circuit)	1	20%
VI	AC Motors: Construction, principles of operation of single phase induction motor (no equivalent circuit)	1	2070
	Starting methods in single phase induction motors -split phase and capacitor start	2	
	END SEMESTER EXAMINATION		

Course Number	Course Name	L-T-P	Credits	Year of introduction
HS200	Business Economics	3-0-0	3	2016

Course Objectives

- To familiarize the prospective engineers with elementary Principles of Economics and Managerial Economics;.
- > To acquaint the students with tools and techniques that are useful in their profession in Managerial Decision Making which will enhance their employability;
- To gain understanding of some Macroeconomic concepts to improve their ability to understand the business climate;
- > To prepare and understand balance sheet at an elementary level.

Syllabus

Nature of economics. Demand and Supply Analysis, demand curve, supply curve and equilibrium price determination. Production economics, economies of Scale, optimal quantity determination, Production and Cost functions, the law of Diminishing Marginal Productivity, Costs, Break-Even Analysis Chart Preparation and Cost-Volume-Profit Analysis. Market Structure and Price-Output Decisions under various competition situations and Collusion/Cartel formations in the real life situation. Monetary theory, functions of RBI and NI. Computation and some aspects of macro economics. Capital Budgeting decisions, forecasting techniques and elementary Balance Sheet..

Expected Outcome

A student who has undergone this course

- would be able to make investment decisions based on capital budgeting methods in alignment with microeconomic and macroeconomic theories.
- would be able to analyse the profitability of the firm, economy of operation, determination of price under various market situations with good grasp on the effect of trade cycles in business.
- would gain knowledge on Monetary theory, measures by RBI in controlling interest rate and emerging concepts like Bit Coin.
- would gain knowledge of elementary accounting concepts used for preparing balance sheet and interpretation of balance sheet

	Course Plan				
Unit	Topics	Hours Allotted	Percentage Marks		
Ι	Nature of Economics Definitions of Economics and their	6	15%		
	limitations, Economic Problems (2 Hrs.), Economic				
	Systems, meaning of Business or Managerial Economics (2				
	Hrs.)and its role and relevance in managerial decision				
	making in an industrial setting (2 Hrs).				
II	Demand and Supply Analysis Demand Curve, Demand	6	15%		
	function (2 Hrs.), Elasticity of demand and its estimation (2				
	Hrs.), Supply curve, equilibrium price and price mechanism				
	(2 Hrs).				
TTT	FIRST INTERNAL EXAM	6	150/		
111	Production Economics Economies of Scale and Disascenemics of Scale (1 Un) Production and Cost	0	15%		
	Diseconomies of Scale (1 Hr.), Production and Cost				
	Punctions. Factors of Production (2 His.), Law of Diminishing marginal Productivity Construction and				
	Diministing marginal Floductivity. Construction and				
IV	Market Structure and Price-Output Decisions Price and	6	15%		
1 V	output determination under Perfect Competition Monopoly	0	1370		
	and Monopolistic Competition (3 Hrs.) Collusion and				
	Cartel, Nash Equilibrium (3 Hrs.).				
	SECOND INTERNAL EXAM		1		
V	Money, National Income and Taxation Money, Emerging	9	20%		
	Bit Coin concept, Quantity Theory of Money, Interest Rate				
	Management (2 Hrs), Open Market Operations by RBI,				
	Selective Credit Controls, SLR, CRR (2 Hrs), Definition &				
	Measurement of National Income, methods, sectors of				
	economy (3 Hrs), inflation, deflation, trade cycles- Value-				
	Added Tax (2 Hrs).				
VI	Investment Decisions and Balance Sheet Analysis Capital	9	20%		
	Budgeting, Investment Analysis – NPV, IRR, Profitability				
	Index, ARR, Payback Period (3 Hrs), Depreciation, Time				
	value of money. Business Forecasting – Elementary				
	intermetation (4 Hrs). Balance sneet preparation principles and				
	LITU SLIVILS I LA LAANI				

Text Book

Yogesh, Maheswari, Management Economics, PHI learning, NewDelhi, 2012

References

- 1. Dornbusch, Fischer and Startz, Macroeconomics, McGraw Hill, 11th edition, 2010.
- 2. Khan M Y, Indian Financial System, Tata McGraw Hill, 7th edition, 2011.
- 3. Samuelson, Managerial Economics, 6th edition, Wiley
- 4. Snyder C and Nicholson W, Fundamentals of Microeconomics, Cengage Learning (India), 2010.
- Truett, Managerial Economics: Analysis, Problems, Cases, 8th Edition, Wiley Welch, Economics: Theory and Practice 7th Edition, Wiley

Course No.	Course Name	L-T-P- Credits	Year of Introduction
CY 110	ENGINEERING CHEMISTRY LAB	0-0-2-1	2016
 Estimat Estimat Estimat Estimat Estimat Estimat Prepara Determ Determ Determ Analysi Analysi Calibra Verifica Verifica Flame p 	List of Exercises / Experiments (Minir ion of Total Hardness – EDTA method. ion of Iron in Iron ore. ion of Copper in Brass. ion of dissolved oxygen by Winklers method. ion of chloride in water. tion of Urea formaldehyde and Phenol-forma ination of Flash point and Fire point of oil by ination of wavelength of absorption maximu ion, ination of molar absorptivity of a compound of is of IR spectra of any three organic compound is of ¹ H NMR spectra of any three organic compound is of ¹ H NMR spectra of any three organic compound ation of Nernst equation for electrochemical cometric titrations: acid – base and redox titration tivity measurements of salt solutions.	num of 8 mands KALA GGIG GGIG Idehyde resin. Pensky Martin A m and colorimet other than Fe ³⁺ . ds. S mpounds. a solution. ell. ions salinity in sand.	apparatus.
Expected or	utcome will be able to apply and demonstrate the the	vratical concente	of
Engineering	Chemistry.		

Course No.	Course Name	L-T-P- Credits	Year of Introduction
CE110	CIVIL ENGINEERING WORKSHOP	0-0-2-1	2016
	List of Exercises / Experiments (Minin (For Civil Engineering B	ranch)	itory)
Setting out given buildi	of a building: The student should set out a bui ng plan using tape only.	lding (single roo	m only) as per the
Setting out o given buildi	of a building: The student should set out a buil ng plan using tape and cross staff.	ding (single rooi	n only) as per the
Construct a required) - c	wall of height 50 cm and wall thickness 1½ br corner portion – length of side walls 60 cm.	icks using Engli	sh bond (No mortar
Construct a required) - c	wall of height 50 cm and wall thickness 2 bric corner portion – length of side walls 60 cm.	ks using English	i bond (No mortar
Compute the window size in windows measuring it	e area and/or volume of various features of a b e, number of bricks required to construct a wal etc. – To create an awareness of measurement nstruments like vernier caliper, screw gauge et	uilding/structure l of a building, d s and units (use c.).	such as door and liameter of bars used tape or other simple
Testing of b construction concrete cul	uilding materials: The student should do the contract of the strength (brick, ho materials and compare the strength (brick, ho be, stone block, and so on).	ompression testi llow block, later	ng of any three ite block, cement
Computatio measurement	n of Centre of gravity and Moment of inertia on the state of the state	f a given rolled	steel section by actual
Introduction	to simple plumbing and sanitary fittings.		
Home assig and submit boundary w room, one b building sho	nment 1: Preparation of a building model - The a building model for a given plinth area in a gi all. The minimum requirements of a residentia ed room and a kitchen should be included. The buld also be included in the model.	e students in bate ven site plan cor l building viz., d e concept of an e	ches should prepare istrained by a rawing cum dining nergy efficient
Home assig any one uni illustrations	nment 2: Report preparation - The student shou que Civil Engineering structure, prepare and su	ld collect the co abmit a detailed	nstruction details of report with neat
Home assig materials, p	nment 3: Report preparation - The students sho repare and submit a detailed report including the	ould collect samp neir market rates	ples of building
	(For braches other than Civil l	Engineering)	
Setting out o given buildi	of a building: The student should set out a buil ng plan using tape only.	ding (single roor	n only) as per the
and the second second	of a building. The student should set out a buil	dina (cinale roo	monly) as par the
given building plan using tape and cross staff.

Building area computation: The student should prepare a rough sketch of a given single storeyed building and by taking linear measurements compute plinth area and carpet area of the given building.

Construct a wall of at least a height of 500mm and wall thickness 1brick using English bond (No mortar required) - corner portion - length of side walls at least 600mm.

Compute the area and/or volume of various features of a building/structure such as door and window size, number of bricks required to construct a wall of a building, diameter of bars used in windows etc. – To create an awareness of measurements and units (use tape or other simple measuring instruments like vernier calipers, screw gauge etc.).

Horizontal measurements: Find the area of an irregular polygon set out on the field. Vertical measurements: Find the level difference between any two points.

Computation of Centre of gravity and Moment of inertia of a given rolled steel section by sketching and measurements.

Home assignment 1: Preparation of a building model - The students in batches should prepare and submit a building model for a given plinth area in a given site plan constrained by a boundary wall. The minimum requirements of a residential building viz., drawing cum dining room, one bed room and a kitchen should be included. The concept of an energy efficient building should also be included in the model.

Home assignment 2: Report preparation - The student should collect the construction details of an industrial building related to their branch of study, prepare and submit a detailed report with neat illustrations.

Home assignment 3: Report preparation - The students should collect samples of building materials, prepare and submit a detailed report about their market rates.

Course No.	Course Name	L-T-P-Credits	Year of Introduction
CY100	ENGINEERING CHEMISTRY	3-1-0-4	2016

To enable the students to acquire knowledge in the concepts of chemistry for engineering applications and to familiarize the students with different application oriented topics like new generation engineering materials, storage devices, different instrumental methods etc. And to develop abilities and skills that are relevant to the study and practice of chemistry.

Syllabus

Spectroscopy - Principles and Applications, Electrochemistry - Electrodes, Electrochemical series and applications, Nernst Equation, Potentiometric titration and application, Cells, Instrumental Methods-Thermal Analysis, Chromatography; Conductivity, Chemistry of Engineering Materials, Copolymers, Conducting Polymers, Advanced Polymers, Nano materials, Fuels and Calorific value; Lubricants and their properties, Water Technology - Hardness, Water softening methods, Sewage water Treatment.

Expected outcome

The student will be able to apply the knowledge of chemistry and will be equipped to take up chemistry related topics as part of their project works during higher semester of the course.

References Books:

- Ahad, J., Engineering Chemistry, Jai Publications
- Dara, S. S., Engineering Chemistry, S Chand Publishers
- Fernandez, A., Engineering Chemistry, Owl Book Publishers, ISBN 9788192863382
- · Jain and Jain, Engineering Chemistry, Dhanpat Rai Publishers
- Kaurav, Engineering Chemistry with Laboratory Experiments. PHI, ISBN 9788120341746
- Manjooran K. S., Modern Engineering Chemistry, Kannatheri Publication
- Seymour, R. B., Introduction to Polymer Chemistry, McGraw Hill
- Rath, P., Engineering Chemistry, Cengage Learning, ISBN 9788131526699
- Wiley India, Engineering Chemistry, ISBN 9788126543205

Course Plan

	Course Finn		
Module	Contents 2014	Hours	Sem. Exam Marks
I	Spectroscopy: Introduction, Beer Lamberts Law (no derivations)(Numericals)	- E	
	UV-visible spectroscopy - Principle, Instrumentation and applications	2	1
	IR spectroscopy - Principle and applications (Numaericals)	2	15%
	¹ H NMR spectroscopy - Principle, chemical shift - spin - spin splitting and applications including MRI(brief), Spectral Problems	-4	1
п	Electrochemistry: Different types of electrodes (general) – SHE, Calomel electrode, Glass electrode and determination of E ⁰ using SHE & Calomel	2	15%

	electrode		
	Electrochemical series and its applications.(Numericals)	1	
	Nernst equation - Derivation, application & numericals	2	
	Potentiometric titration - Acid-base and redox titration	2	
	Lithium ion cell and Fuel cell.	1	
	FIRST INTERNAL EXAM	<u></u>	
III	Instrumental Methods: Thermal analysis - Principle, instrumentation and applications of TGA and DTA.	3	
	Chromatographic methods - Basic principles, column, TLC. Instrumentation and principles of GC and HPLC.	4	15%
	Conductivity - Measurement of conductivity	1	
IV	Chemistry of Engineering Materials: Copolymers - BS, ABS - Structure and Properties.	1	
	Conducting Polymers - Polyaniline, Polypyrrole - Preparation, Structure and Properties.	2	
	OLED – An introduction	1	
	Advanced Polymers – Kevlar, Polybutadiene rubber and silicone rubber: Preparation, Structure and Properties.	2	15%
	Nanomaterials – Definition, Classification, chemical methods of preparation - hydrolysis and reduction	2	
	Properties and Applications – Carbon Nano Tubes and fullerenes.	1	
X 7	SECOND INTERNAL EXAM	1	I
V	Determination of calorific value of a solid and liquid fuel by Bomb calorimeter - Dulongs formula and Numericals.	3	
	Liquid fuel - Petrol and Diesel - Octane number & Cetane number	1	• • • • •
	Biodiesel - Natural gas.	2	20%
	Lubricant - Introduction, solid, semisolid and liquid lubricants.	1	
	Properties of lubricants - Viscosity Index, Flash point, Fire point, Cloud point, Pour point and Aniline point.	2	
VI	Water Technology: Types of hardness, Units of hardness, Estimation of Hardness – EDTA method. Numericals based on the above	3	
	Water softening methods - Ion exchange process - Principle. Polymer ion exchange.	2	20%
	Reverse Osmosis - Disinfection method by chlorination and UV	1	
	Dissolved oxygen, BOD and COD.	2	
	Sewage water Treatment - Trickling Filter and UASB process.	1	
	END SEMESTER EXAM		

Course	Course Name	L-T-P-	Year of
No.		Credits	Introduction
EC110	ELECTRONICS ENGINEERING WORKSHOP	0-0-2-1	2016

This course gives the basic introduction of electronic hardware systems and provides hands-on training with familiarization, identification, testing, assembling, dismantling, fabrication and repairing such systems by making use of the various tools and instruments available in the Electronics Workshop.

List of Exercises / Experiments (Minimum of 8 mandatory)

- Familiarization/Identification of electronic components with specification (Functionality, type, size, colour coding, package, symbol, cost etc. [Active, Passive, Electrical, Electronic, Electro-mechanical, Wires, Cables, Connectors, Fuses, Switches, Relays, Crystals, Displays, Fasteners, Heat sink etc.)
- Drawing of electronic circuit diagrams using BIS/IEEE symbols and introduction to EDA tools, Interpret data sheets of discrete components and IC's, Estimation and costing.
- Familiarization/Application of testing instruments and commonly used tools. [Multimeter, Function generator, Power supply, CRO etc.] [Soldering iron, De-soldering pump, Pliers, Cutters, Wire strippers, Screw drivers, Tweezers, Crimping tool, Hot air soldering and desoldering station etc.]
- Testing of electronic components [Resistor, Capacitor, Diode, Transistor, UJT and JFET using multimeter.]
- Inter-connection methods and soldering practice. [Bread board, Wrapping, Crimping, Soldering - types - selection of materials and safety precautions, soldering practice in connectors and general purpose PCB, Crimping.]
- Printed circuit boards (PCB) [Types, Single sided, Double sided, PTH, Processing methods, Design and fabrication of a single sided PCB for a simple circuit with manual etching (Ferric chloride) and drilling.]
- Assembling of electronic circuit/system on general purpose PCB, test and show the functioning(Any Four circuits)
 - Fixed voltage power supply with transformer, rectifier diode, capacitor filter, zener/IC regulator.
 - 2. LED blinking circuit using a stable multi-vibrator with transistor BC 107.
 - 3. Square wave generation using IC 555 timer in IC base.
 - 4. Sine wave generation using IC 741 OP-AMP in IC base.
 - 5. RC coupled amplifier with transistor BC 107.
 - 6. AND and NAND gates in diode transistor logic.

8.Familiarization of electronic systems (Any three systems)

- 1. Setting up of a PA system with different microphones, loud speakers, mixer etc.
- 2. Assembling and dismantling of desktop computer/laptop/mobile phones.
- 3. Coil/Transformer winding.
- 4. Identify the subsystems of TV, DTH, CCTV, Cable TV, CRO, Function generator etc.
- 5. Screen printing and PCB pattern transfer
- 6. Soldering & de-soldering of SMD using hot air soldering station.
- 7. Introduction to robotics- Familiarization of components (motor, sensors, battery etc.) used in robotics and assembling of simple robotic configurations.

Expected outcome

Student can identify the active and passive electronic components. Student gets hands-on assembling, testing, assembling, dismantling, fabrication and repairing systems by making use of the various tools and instruments available in the Electronics Workshop.

Course No.	Course Name	L-T-P-Credits	Year of Introduction
BE100	ENGINEERING MECHANICS	3-1-0-4	2016

- 1. To apply the principles of mechanics to practical engineering problems.
- 2. To identify appropriate structural system for studying a given problem and isolate it from its environment.
- 3. To develop simple mathematical model for engineering problems and carry out static analysis.
- 4. To carry out kinematic and kinetic analyses for particles and systems of particles.

Syllabus

Statics: Fundamental concepts and laws of mechanics; Force systems; Principle of moments; Resultant of force and couple systems; Equilibrium of rigid body; Free body diagram; Equilibrium of a rigid body in three dimension; Support reactions; Properties of surfaces and solids - Centroid, Moment of inertia, Polar moment of inertia, Mass moment of inertia, Product of inertia and Principal moment of inertia; Theorems of Pappus – Guldinus; Friction; Principle of virtual work.

Dynamics: Rectangular and cylindrical coordinate system; Combined motion of rotation and translation; Newton's second law in rectilinear translation; D' Alembert's principle; Mechanical vibration; Simple harmonic motion; Spring-mass model.

Expected outcome

- 1. Students will be able to apply and demonstrate the concepts of mechanics to practical engineering problems.
- 2. Students will be able to determine the properties of planes and solids.
- 3. Students will be able to apply fundamental concepts of dynamics to practical problems.

Text Books:

• Shames, I. H., Engineering Mechanics - Statics and Dynamics, Pearson Prentice

Estd.

• Timoshenko, S. & Young D. H., Engineering Mechanics, McGraw Hill

References Books:

- Babu, J., Engineering Mechanics, Pearson Prentice Hall
- Beer and Johnson, Vector Mechanics for Engineers Statics and Dynamics, Tata McGraw Hill Publishing Company Limited
- Benjamin J., Engineering Mechanics, Pentex Book Publishers and Distributors
- Bhavikkatti, S. S., Engineering Mechanics, New Age International Publishers
- Hibbeler, R. C., Engineering Mechanics: Statics and Dynamics. Pearson Prentice Hall
- Kumar, K. L., Engineering Mechanics, Tata McGraw Hill Publishing Company Limited
- Merriam J. L. and Kraige L. G., Engineering Mechanics Vol. I and II, John Wiley
- Rajasekaran S. and Sankarasubramanian, G., Engineering Mechanics, Vikas Publishing House Private Limited
- Tayal, A. K., Engineering Mechanics- Statics and Dynamics, Umesh Publications

	Course Plan		
Module	Contents	Hours	Sem. Exam Marks
I	Statics: Fundamental concepts and laws of mechanics - Rigid body -	2	
	Principle of transmissibility of forces	2	
	Coplanar force systems - Moment of a force – Principle of moments	2	15%
	Resultant of force and couple system	4	1570
	Equilibrium of rigid body – Free body diagram – Conditions of equilibrium in two dimensions – Two force and three force members.	3	
П	Types of supports – Problems involving point loads and uniformly distributed loads only.	5	150/
	Force systems in space – Degrees of freedom – Free body diagram – Equations of equilibrium – Simple resultant and Equilibrium problems.	4	13%
	FIRST INTERNAL EXAM	ł	2
ш	Properties of planar surfaces – Centroid and second moment of area (Derivations not required) - Parallel and perpendicular axis theorem – Centroid and Moment of Inertia of composite area.	3	
	Polar Moment of Inertia – Radius of gyration – Mass moment of inertia of cylinder and thin disc (No derivations required).	2	15%
	Product of inertia – Principal Moment of Inertia (conceptual level).	3	
	Theorems of Pappus and Guldinus.	1	
IV	Friction – Characteristics of dry friction – Problems involving friction of ladder, wedges and connected bodies.	6	1.50/
	Definition of work and virtual work – Principle of virtual work for a system of connection bodies – Problems on determinate beams only.	4	15%
	SECOND INTERNAL EXAM		
V	Dynamics: Rectangular and Cylindrical co-ordinate system	1	
	Combined motion of rotation and translation – Concept of instantaneous centre – Motion of connecting rod of piston and crank of a reciprocating pump.	4	20%
	Rectilinear translation – Newton's second law – D'Alembert's Principle – Application to connected bodies (Problems on motion of lift only).	4	
VI	Mechanical vibrations – Free and forced vibration - Degree of freedom.	1	000000000
	Simple harmonic motion – Spring-mass model – Period – Stiffness – Frequency – Simple numerical problems of single degree of freedom.	7	20%

Course No.	Course Name	L-T-P- Credits	Year of Introduction
HS210	LIFE SKILLS	2-0-2	2016

- To develop communication competence in prospective engineers.
- To enable them to convey thoughts and ideas with clarity and focus.
- To develop report writing skills.
- To equip them to face interview & Group Discussion.
- To inculcate critical thinking process.
- To prepare them on problem solving skills.
- To provide symbolic, verbal, and graphical interpretations of statements in a problem description.
- To understand team dynamics & effectiveness.
- To create an awareness on Engineering Ethics and Human Values.
- To instill Moral and Social Values, Loyalty and also to learn to appreciate the rights of others.
- To learn leadership qualities and practice them.

Syllabus

Communication Skill: Introduction to Communication, The Process of Communication, Barriers to Communication, Listening Skills, Writing Skills, Technical Writing, Letter Writing, Job Application, Report Writing, Non-verbal Communication and Body Language, Interview Skills, Group Discussion, Presentation Skills, Technology-based Communication.

Critical Thinking & Problem Solving: Creativity, Lateral thinking, Critical thinking, Multiple Intelligence, Problem Solving, Six thinking hats Mind Mapping & Analytical Thinking.

Teamwork: Groups, Teams, Group Vs Teams, Team formation process, Stages of Group, Group Dynamics, Managing Team Performance & Team Conflicts.

Ethics, Moral & Professional Values: Human Values, Civic Rights, Engineering Ethics, Engineering as Social Experimentation, Environmental Ethics, Global Issues, Code of Ethics like ASME, ASCE, IEEE.

Leadership Skills: Leadership, Levels of Leadership, Making of a leader, Types of leadership, Transactions Vs Transformational Leadership, VUCA Leaders, DART Leadership, Leadership Grid & leadership Formulation.

Expected outcome

- Communicate effectively.
- Make effective presentations.
- Write different types of reports.
- Face interview & group discussion.
- Critically think on a particular problem.
- Solve problems.
- Work in Group & Teams
- Handle Engineering Ethics and Human Values.
- Become an effective leader.

References:

- Barun K. Mitra; (2011), "Personality Development & Soft Skills", First Edition; Oxford Publishers.
- Kalyana; (2015) "Soft Skill for Managers"; First Edition; Wiley Publishing Ltd.
- Larry James (2016); "The First Book of Life Skills"; First Edition; Embassy Books.
- Shalini Verma (2014); "Development of Life Skills and Professional Practice"; First Edition; Sultan Chand (G/L) & Company
- John C. Maxwell (2014); "The 5 Levels of Leadership", Centre Street, A division of Hachette Book Group Inc.

Course Plan				
Module	Contents	Ho L-1	urs F-P	Sem. Exam
	Need for Effective Communication, Levels of communication; Flow of communication; Use of language in communication; Communication networks; Significance of technical communication, Types of barriers; Miscommunication; Noise; Overcoming measures,	2	<u> </u>	Marks
	Listening as an active skill; Types of Listeners; Listening for general content; Listening to fill up information; Intensive Listening; Listening for specific information; Developing effective listening skills; Barriers to effective listening skills.		2	
I	Technical Writing: Differences between technical and literary style, Elements of style; Common Errors, Letter Writing: Formal, informal and demi-official letters; business letters, Job Application: Cover letter, Differences between bio-data, CV and Resume, Report Writing: Basics of Report Writing; Structure of a report; Types of reports.		4	
	Non-verbal Communication and Body Language: Forms of non-verbal communication; Interpreting body-language cues; Kinesics; Proxemics; Chronemics; Effective use of body language	3		
	Interview Skills: Types of Interviews; Ensuring success in job interviews; Appropriate use of non-verbal communication, Group Discussion: Differences between group discussion and debate; Ensuring success in group discussions, Presentation Skills: Oral presentation and public speaking skills; business presentations, Technology-based Communication: Netiquettes: effective e-mail messages; power-point presentation; enhancing editing skills using computer software.		4	
II	Need for Creativity in the 21 st century, Imagination, Intuition, Experience, Sources of Creativity, Lateral Thinking, Myths of creativity	2		

	Critical thinking Vs Creative thinking, Functions of Left Brain & Right brain, Convergent & Divergent Thinking, Critical reading & Multiple Intelligence.		2	
	Steps in problem solving, Problem Solving Techniques, Problem Solving through Six Thinking Hats, Mind Mapping, Forced Connections.	2		
	Problem Solving strategies, Analytical Thinking and quantitative reasoning expressed in written form, Numeric, symbolic, and graphic reasoning, Solving application problems.		2	
	Introduction to Groups and Teams, Team Composition, Managing Team Performance, Importance of Group, Stages of Group, Group Cycle, Group thinking, getting acquainted, Clarifying expectations.	3		
	Group Problem Solving, Achieving Group Consensus.		2	
III	Group Dynamics techniques, Group vs Team, Team Dynamics, Teams for enhancing productivity, Building & Managing Successful Virtual Teams. Managing Team Performance & Managing Conflict in Teams.	3		
	Working Together in Teams, Team Decision-Making, Team		2	
	Morals, Values and Ethics, Integrity, Work Ethic, Service	3		
	Learning, Civic Virtue, Respect for Others, Living Peacefully.			
	Caring, Sharing, Honesty, Courage, Valuing Time, Cooperation, Commitment, Empathy, Self-Confidence, Character,		2	
IV	Spirituality, Senses of 'Engineering Ethics', variety of moral issued, Types of inquiry, moral dilemmas, moral autonomy, Kohlberg's theory, Gilligan's theory, Consensus and controversy, Models of Professional Roles, Theories about right action, Self-interest, customs and religion, application of ethical theories.	3		
	Engineering as experimentation, engineers as responsible experimenters, Codes of ethics, Balanced outlook on.	3		
	The challenger case study, Multinational corporations, Environmental ethics, computer ethics,		2	
	Weapons development, engineers as managers, consulting			

	engineers, engineers as expert witnesses and advisors, moral leadership, sample code of Ethics like ASME, ASCE, IEEE,	3		
	Institution of Engineers(India), Indian Institute of Materials			
	Management, Institution of electronics and telecommunication			
	engineers(IETE), India, etc.			
	Introduction, a framework for considering leadership, entrepreneurial and moral leadership, vision, people selection	4		
	and development, cultural dimensions of leadership, style,			
	followers, crises.			
V	Growing as a leader, turnaround leadership, gaining control, trust, managing diverse stakeholders, crisis management		2	
	Implications of national culture and multicultural leadership	2		
	Types of Leadership, Leadership Traits.			
	Leadership Styles, VUCA Leadership, DART Leadership,			
	Transactional vs Transformational Leaders, Leadership Grid,		2	
	Effective Leaders, making of a Leader, Formulate Leadership			
END SEMESTER EXAM				

EVALUATION SCHEME

Internal Evaluation (Conducted by the College)

Total Marks: 100

Part – A

(To be started after completion of Module 1 and to be completed by 30th working day of the semester)

 Group Discussion – Create groups of about 10 students each and engage them on a GD on a suitable topic for about 20 minutes. Parameters to be used for evaluation is as follows;

(i)	Communication Skills	—	10 marks
(ii)	Subject Clarity	_	10 marks
(iii)	Group Dynamics	-	10 marks
(iv)	Behaviors & Mannerism	IS -	10 marks

(Marks: 40)

Part – B

(To be started from 31^{st} working day and to be completed before 60^{th} working day of the semester)

2. Presentation Skills – Identify a suitable topic and ask the students to prepare a presentation (preferably a power point presentation) for about 10 minutes. Parameters to be used for evaluation is as follows;

(i)	Communication Skills*	-	10 marks
(ii)	Platform Skills**	-	10 marks
(iii)	Subject Clarity/Knowledge	-	10 marks

(Marks: 30)

* Language fluency, auditability, voice modulation, rate of speech, listening, summarizes key learnings etc.

** Postures/Gestures, Smiles/Expressions, Movements, usage of floor area etc.

Part – C

(To be conducted before the termination of semester)

3. Sample Letter writing or report writing following the guidelines and procedures. Parameters to be used for evaluation is as follows;

(i)	Usage of English & Grammar	-	10 marks
(ii)	Following the format	-	10 marks
(iii)	Content clarity	-	10 marks

(Marks: 30)

Time: 2 hrs.

S.IN External Evaluation (Conducted by the University)

Total Marks: 50

Part – A

Short Answer questions

There will be one question from each area (five questions in total) will be asked for the examination. Each question should be written in about maximum of 400 words. Parameters to be used for evaluation are as follows;

- (i) Content Clarity/Subject Knowledge
- (ii) Presentation style
- (iii) Organization of content

(*Marks*: $5 \times 6 = 30$)

Part – B

Case Study

The students will be given a case study with questions at the end the students have to analyze the case and answer the question at the end. Parameters to be used for evaluation are as follows;

- (i) Analyze the case situation
- (ii) Key players/characters of the case
- (iii) Identification of the problem (both major & minor if exists)
- (iv) Bring out alternatives
- (v) Analyze each alternative against the problem
- (vi) Choose the best alternative
- (vii) Implement as solution
- (viii) Conclusion
- (ix) Answer the question at the end of the case

(Marks: 1 x 20 = 20)

COURSE NO.	COURSE NAME	CREDITS	YEAR OF INTRODUCTION
MA 101	CALCULUS	4	2016

In this course the students are introduced to some basic tools in Mathematics which are useful in modelling and analysing physical phenomena involving continuous changes of variables or parameters. The differential and integral calculus of functions of one or more variables and of vector functions taught in this course have applications across all branches of engineering. This course will also provide basic training in plotting and visualising graphs of functions and intuitively understanding their properties using appropriate software packages.

Syllabus

Single Variable Calculus and Infinite series, Functions of more than one variable, Partial derivatives and its applications, Calculus of vector valued functions, Multiple Integrals.

Expected outcome

At the end of the course the student will be able to (i) check convergence of infinite series (ii) find maxima and minima of functions two variables (iii) find area and volume using multiple integrals (iv) apply calculus of vector valued functions in physical applications and (v) visualize graphs and surfaces using software or otherwise.

Text Books

(1)Anton, Bivens, Davis: Calculus, John Wiley and Sons, 10thed

(2)Thomas Jr., G. B., Weir, M. D. and Hass, J. R., Thomas' Calculus, Pearson

References:

- 1. Sengar and Singh, Advanced Calculus, Cengage Learning, Ist Edition
- 2. Erwin Kreyszig, Advanced Engineering Mathematics, Wiley India edition, 10thed.
- 3. B. S. Grewal, Higher Engineering Mathematics, Khanna Publishers, New Delhi.
- 4. N. P. Bali, Manish Goyal, Engineering Mathematics, Lakshmy Publications
- 5. D. W. Jordan, P Smith. Mathematical Techniques, Oxford University Press, 4th

Edition.

 A C Srivastava, P K Srivasthava, Engineering Mathematics Vol 1. PHI Learning Private Limited, New Delhi.

	A DI A DIDITI LZA	T LAC M	1
	APLABUUL KA	ALAN	1
	COURSE NO: MA101	L-T-P:3-1-0	
	COURSE NAME: CALCULUS	CREDITS:4	
MODULE	CONTENT	HRS	END SEM. MARK %
Ι	Single Variable Calculus and Infinite series (Book I – sec 9.3,9.5,9.6,9.8) Basic ideas of infinite series and convergence - .Geometric series- Harmonic series-Convergence tests-comparison, ratio, root tests (without proof). Alternating series- Leibnitz Test- Absolute convergence, Maclaurins series-Taylor series - radius of convergence. (For practice and submission as assignment only: Sketching, plotting and interpretation of hyperbolic functions using suitable software. Demonstration of convergence of series bysoftware packages)	9	15%
П	Partial derivatives and its applications(Book I -sec. 13.3 to 13.5 and 13.8) Partial derivatives–Partial derivatives of functions of more than two variables - higher order partial derivatives - differentiability, differentials and local linearity -	5	150/
11	The chain rule – Maxima and Minima of functions of two variables - extreme value theorem (without proof)-relative extrema.	4	1.5 /0

	FIRST INTERNAL EXAM			
	Calculus of vector valued functions(Book I- 12.1,12.2,12.4&12.6,13.6 &13.7)			
III	 Introduction to vector valued functions-parametric curves in 3-space Limits and continuity – derivatives - tangent lines – derivative of dot and cross product-definite integrals of vector valued functions- unit tangent-normal- velocity-acceleration and speed–Normal and tangential components of acceleration. Directional derivatives and gradients-tangent planes and normal vectors (For practice and submission as assignment only: Graphing parametric curves and surfaces using software packages) 	ALAM IC ³ AL Y ₃	15%	
IV	Multiple integrals (Book I-sec. 14.1, 14.2, 14.3, 14.5) Double integrals- Evaluation of double integrals – Double integrals in non-rectangular coordinates- reversing the order of integration- Area calculated as a double integral- Triple integrals(Cartesian co ordinates only)- volume calculated as a triple integral- (applications of results only)	4 2 2 2 2	15%	
	SECOND INTERNAL EXAM			
	Topics in vector calculus			
	(Book I-15.1, 15.2, 15.3)			
	Vector and scalar fields- Gradient fields –	2		

6

	conservative fields and potential functions –	2	
	divergence and curl - the ∇ operator - the	2	20%
V	Laplacian ∇^2 ,		
	Line integrals - work as a line integral-	2	
	independence of path-conservative vector field –	LAA	A
	(For practice and submission as assignment only:	ICA	Ant
	graphical representation of vector fields using software packages)	Y	
	Topics in vector calculus (continued)		
	(Book I sec., 15.4, 15.5, 15.7, 15.8)		
	Green's Theorem (without proof- only for	2	
	simply connected region in plane),		
	surface integrals –	2	
VI	Divergence Theorem (without proof for evaluating surface integrals),	3	20%
	Stokes' Theorem (without proof for evaluating line integrals)	3	
	(All the above theorems are to be taught in		
	regions in the rectangular co ordinate system	1	
	END SEMESTER EXAM		
	2014	1	

Open source software packages such as gnuplot, maxima, scilab ,geogebra or R may be used as appropriate for practice and assignment problems.

TUTORIALS: Tutorials can be ideally conducted by dividing each class in to three groups. Prepare necessary materials from each module that are to be taught using computer. Use it uniformly to every class.

Course No.	Course Name	L-T-P-	Year of
		Credits	Introduction
MA102	DIFFERENTIAL EQUATIONS	3-1-0-4	2016

This course introduces basic ideas of differential equations, both ordinary and partial, which are widely used in the modelling and analysis of a wide range of physical phenomena and has got applications across all branches of engineering. The course also introduces Fourier series which is used by engineers to represent and analyse periodic functions in terms of their frequency components.

Syllabus

Homogeneous linear ordinary differential equation, non-homogeneous linear ordinary differential equations, Fourier series, partial differential equation, one dimensional wave equation, one dimensional heat equation.

Expected Outcome

At the end of the course students will have acquired basic knowledge of differential equations and methods of solving them and their use in analysing typical mechanical or electrical systems. The included set of assignments will familiarise the students with the use of software packages for analysing systems modelled by differential equations.

TEXT BOOKS

- Erwin Kreyszig: Advanced Engineering Mathematics, 10th ed. Wiley
- A C Srivastava, P K Srivasthava, Engineering Mathematics Vol 2. PHI Learning Private Limited, New Delhi.

REFERENCES:

• Simmons: Differential Equation with Applications and its historical Notes,2e McGrawHill Education India 2002

Estd.

- Datta, Mathematical Methods for Science and Engineering. CengageLearing, 1st. ed
- B. S. Grewal. Higher Engineering Mathematics, Khanna Publishers, New Delhi.
- N. P. Bali, Manish Goyal. Engineering Mathematics, Lakshmy Publications
- D. W. Jordan, P Smith. Mathematical Techniques, Oxford University Press, 4th Edition.
- C. Henry Edwards, David. E. Penney. Differential Equations and Boundary Value Problems. Computing and Modelling, 3rd ed. Pearson

	COURSE PLAN				
	COURSE NO: MA102	L-T-P:3-1-	0		
	COURSE NAME:	CREDITS	:4		
	DIFFERENTIAL				
-	EQUATIONS				
MODULE	CONTENT	HRS	END SEM. EXAM		
	ADI ARINI KA	$\Delta \Lambda_{0}$	MARKS (OUT OF 100)		
	HOMOGENEOUS DIFFERENTIAL EQUATIONS	L PALV	1		
	(Text Book 1 · Sections 1 7 2 1 2 2 2 6 3 2)	CA.			
	Existence and uniqueness of solutions for initial	SA			
	value problems. Homogenous linear ODEs of second				
	order Homogenous linear ODEs with constant	3			
	coefficients Existence and Uniqueness of solutions				
I	Wronskian.				
	Homogenous linear ODEs with constant	4	17		
	Coefficients (Higher Order)				
	(For practice and submission as assignment only:				
	Modelling of free oscillations of a mass –				
	spring system)				
	NON-HOMOGENEOUS LINEAR ORDINARY				
	DIFFERENTIAL EQUATIONS				
	(Text Book 2: Sections 1.2.7 to 1.2.14)				
	The particular Integral (P.I.). Working rule for P.I.				
	when $g(x)$ is X^m . To find P1 when $g(x) = e^{ax} V_1(x)$	1.			
	Working rule for P_{i} when $q(x) = x V(x)$				
	Working fulle for P.I. when $g(x) = x.v(x)$,	_	17		
11	Homogeneous Linear Equations, PI of Homogenous	7			
	equations				
	Legendae's Linead eduations	2			
	Wethod of Variation of parameters for finding Pis	3			
	(For practice and submission as assignments only:	1			
	alactria airquita)				
	EIDST INTEDNAL EVAM	1			
	FIRST LITERNAL EAAM				
	FOURIER SERIES				
	(Text Book 2 - Sections 4.1,4.2,4.3,4.4)				
	Periodic functions ,Orthogonally of Sine and Cosine	2			
	functions (Statement only), Fourier series and	3			
	Euler's formulas	_	17		
	Fourier cosine series and Fourier sine series	3			
	(Fourier series of even and Odd functions)				
	Half range expansions (All results without proof)	3			

demonstrations of convergence using plotting software) PARTIAL DIFFERENTIAL EQUATIONS (Text Book 2 : Sections : 5.1, 5.1.1, 5.1.2, 5.1.5, 5.2.6-5.2.10) Introduction to partial differential equations , formation of PDE, Solutions of first order PDE(Linear only) IV Lagrange's Method Linear PDE with constant coefficients , Solutions of Linear Homogenous PDE with constant coefficients , Shorter method for finding PI when g(x,y)=f(ax+by), Method of finding PI when g(x,y) = x ^m y ⁿ , method of find PI when g(x,y) = e ^{ax+by} V(x,y) EXECOND INTERNAL EXAM ONE DIMENSIONAL WAVE EQUATION		(For practice and submission as assignment only: Plots of partial sums of Fourier series and		
PARTIAL DIFFERENTIAL EQUATIONS (Text Book 2 : Sections :-5.1, 5.1.1, 5.1.2, 5.1.5, 5.2.6 - 5.2.10) Introduction to partial differential equations , formation of PDE, Solutions of first order PDE(Linear only) IV Lagrange's Method Linear PDE with constant coefficients , Solutions of Linear Homogenous PDE with constant coefficients , Shorter method for finding PI when g(x,y)=f(ax+by), Method of finding PI when g(x,y) = x ^m y ⁿ , method of find PI when g(x,y) = c ^{ax+by} V(x,y) EXECOND INTERNAL EXAM ONE DIMENSIONAL WAVE EQUATION		demonstrations of convergence using plotting software)		
IV (Text Book 2: Sections : 5.1, 5.1.1, 5.1.2, 5.1.5, 5.2.6-5.2.10) Introduction to partial differential equations , formation of PDE, Solutions of first order PDE(Linear only) 3 IV Lagrange's Method 3 Linear PDE with constant coefficients , Solutions of Linear Homogenous PDE with constant coefficients , Shorter method for finding PI when g(x,y)=f(ax+by), Method of finding PI when g(x,y) = x ^m y ⁿ , method of find PI when g(x,y) = e ^{ax+by} V(x,y) 6 SECOND INTERNAL EXAM ONE DIMENSIONAL WAVE EQUATION		PARTIAL DIFFERENTIAL EQUATIONS		
Linear PDE with constant coefficients , Solutions of Linear Homogenous PDE with constant coefficients , Shorter method for finding PI when $g(x,y)=f(ax+by)$, Method of finding PI when $g(x,y) = x^m y^n$, method of 	IV	(Text Book 2 : Sections : 5.1, 5.1.1, 5.1.2, 5.1.5, 5.2.6-5.2.10) Introduction to partial differential equations , formation of PDE, Solutions of first order PDE(Linear only) Lagrange's Method	LAN IC ³ A Y ₃	17
ONE DIMENSIONAL WAVE EQUATION		Linear PDE with constant coefficients , Solutions of Linear Homogenous PDE with constant coefficients , Shorter method for finding PI when $g(x,y)=f(ax+by)$, Method of finding PI when $g(x,y) = x^m y^n$, method of find PI when $g(x,y)=e^{ax+by} V(x,y)$	6	
ONE DIMENSIONAL WAVE EQUATION		SECOND INTERNAL EXAM		
V(Text Book 2: Sections :6.1 6.4)Method of separation of variablesThe wave EquationVibrations of a stretched string1	V	ONE DIMENSIONAL WAVE EQUATION (Text Book 2: Sections :6.1 6.4) Method of separation of variables The wave Equation Vibrations of a stretched string	2 1 1	16
Solutions of one dimensional wave equation using method of separation of variables and problems		Solutions of one dimensional wave equation using method of separation of variables and problems	4	
ONE DIMENSIONAL HEAT EQUATION (Text Book 2: sections 6.7, 6.8, 6.9, 6.9.1, 6.9.2) The equation of Heat conduction1VIOne dimensional Heat transfer equation. Solutions of One Dimensional Heat transfer equation, A long insulated rod with ends at zero temperatures, A long insulated rod with ends at non zero temperatures6	VI	ONE DIMENSIONAL HEAT EQUATION (Text Book 2: sections 6.7, 6.8, 6.9, 6.9.1, 6.9.2) The equation of Heat conduction One dimensional Heat transfer equation. Solutions of One Dimensional Heat transfer equation, A long insulated rod with ends at zero temperatures, A long insulated rod with ends at non zero temperatures	1 1 6	16
END SEMESTER EXAM		END SEMESTER FXAM		

TUTORIALS: Tutorials can be ideally conducted by dividing each class into three groups. Prepare necessary materials from each module that can be practiced using computer software. Use them uniformly in every class.

Co	urse No.	Course Name	L-T-P- Credits	Year of Introduction
MI	E110 N	MECHANICAL ENGINEERING WORKSHOP	0-0-2-1	2016
Cour Intro meas	rse Object duction to uring device	ives manufacturing processes and applications. Familiariz ces, practices and machines used in various worksho	zation of vari p sections.	ous tools,
		List of Exercises / Experiments (Minimum of 8	mandatory)	1
SI. Sho	Name of N p floor	ECHNOExercises	CAI	No of sessions
1	General	Studies of mechanical tools, components and th (a) Tools: screw drivers, spanners, Allen keys, And accessories (b) Components: Bearings, seals, O-rings, circl	heir applicati cutting plier lips, keys etc.	ons: s etc. 1
2	Carpentry	Any one model from the following: 1. T-Lap joint 2. Cross lap joint 3. Dovetail joint	nt 4. Mortise	joint 2
3	Smithy	 (a) Demonstrating the forgability of different in Alloy steel and Cast steel) in cold and hot state (b) Observing the qualitative differences in the materials (c) Determining the shape and dimensional variables specimen due to forging under different inspection and measurements 	materials (M s. hardness of riations of A states by	S, Al, these 2 Al test visual
4	Foundry	Any one exercise from the following 1. Bench moulding 2. Floor moulding 3. Core i	making	2
5	Sheet met	Any one exercise from the following Making 1. Cylindrical 2. Conical 3. Prismatic s sheet metal	haped jobs fi	rom 2
6	Welding	Any one exercise from the following Making joints using Electric arc welding. Beac horizontal, vertical and overhead positions	d formation i	n 2
7	Fitting ar Assembly	Filing exercise and any one of the following ex Disassembling and reassembling of 1. Cylinder 2. Tail stock assembly 3. Time piece/clock 4. E machine.	ercises r piston asser Bicycle or any	nbly 2
8	Machines	Demonstration and applications of Drilling ma- machine, Shaping machine, Milling machine and	chine, Grindi nd lathe	^{ng} 2

Co	urse io.	Course Name	L-T-P- Credits	Year of Introduction
PH	[110	ENGINEERING PHYSICS LAB	0-0-2-1	2016
Cour This have stude	rse Objec course is studied i nts.	ctives designed (i) to impart practical knowledge n the Engineering Physics course and (ii) to	about some of the develop the exper	phenomena they imental skills of the
		List of Exercises / Experiments (Mini	mum of 8 mandat	ory)
Basic	28	LINIVER	SITY	
1. 1	Study of measuren Temperat	application of Cathode Ray Oscilloscope (tents. Lissajeous figures (useful for different ture measurement – Thermocounle	CRO) for Frequenc types of polarized 1	y and Amplitude ight.)
3 1	Measurer	nent of strain using strain gauge and Whea	tstones bridge	
Wav	es, Oscil	lations and Ultrasonics	onnes onnge.	
4, 1 5	Wave le ultrasonio The LCR Meldes longitudi	ngth and velocity measurement of ultr c diffractometer, Circuit – Forced and damped harmonic os string apparatus. Measurement of free nal mode.	asonic waves in cillations. quency in the t	a liquid using ransverse and
Inter	ference			
7.	Wave ler Rings me	ngth measurement of a monochromatic sthod.	source of light us	ing Newton's
8. 1	Determin	ation of refractive index of a liquid using N	lewton's Rings app	paratus.
9. 1	Determin wedge m	ation of diameter of a thin wire or thick ethod.	ness of a thin stri	ip of paper using air
Diffr	action	2014		
10.	To detern	nine the slit or pinhole width.		
11.	To measu	ire wavelength using a millimeter scale as a	grating.	
12. 1	Determin	ation the wavelength of He-Ne laser or any	standard laser usin	ng diffraction grating.
13.	To detern	nine the wavelength of monochromatic ligh	it using grating.	
14. 1	Determin	ation of dispersive power and resolving po	wer of a plane tran	smission grating.

Polarisation

- 15. Kerr Effect To demonstrate the Kerr effect in nitrobenzene solution and to measure the light intensity as a function of voltage across the Kerr cell using photo detector.
- 16. To measure the light intensity of plane polarised light as a function of the analyzer position.
- Laurent's Half Shade Polarimeter To observe the rotation of the plane of polarization of monochromatic light by sugar solution and hence to determine the concentration of solution of optically active substance.

Laser & Photonics

- 18. To determine the speed of light in air using laser.
- 19. Calculate the numerical aperture and study the losses that occur in optical fiber cable.
- 20. Determination of the particle size of lycopodium powder.
- 21. I-V characteristics of solar cell
- 22. To measure Planck's constant using photo electric cell.
- 23. Measurement of wavelength of laser using grating.

Reference Books:

- Avadhanulu, M. N., Dani, A. A. and Pokley, P. M., Experiments in Engineering Physics, S. Chand & Co.
- Gupta, S. K., Engineering Physics Practicals, Krishna Prakashan Pvt. Ltd.
- Koser, A. A., Practical Engineering Physics, Nakoda Publishers and Printers India Ltd
- Rao, B. S. and Krishna, K. V., Engineering Physics Practicals, Laxmi Publications
- Sasikumar, P. R. Practical Physics, PHI.

Website:

http://www.indosawedu.com

Course No.	Course Name	L-T-P-Credits	Year of Introduction
PH100	ENGINEERING PHYSICS	3-1-0-4	2016

Most of the engineering disciplines are rooted in Physics. In fact a good engineer is more or less an applied physicist. This course is designed to provide a bridge to the world of technology from the basics of science and to equip the students with skills in scientific inquiry, problem solving, and laboratory techniques.

Syllabus

Harmonic Oscillations: Damped and Forced Harmonic Oscillations. Waves: One Dimensional and Three Dimensional waves, Interference: Interference in thin films (Reflected system) Diffraction: Fraunhofer and Fresnel Diffraction, Grating, Polarization of Light: Double refraction, production and detection of polarized light, Superconductivity: Properties and Applications. Quantum Mechanics: Schrodinger Equations- Formulation and Solution, Operators, Applications. Statistical Mechanics: Microstates and macro states Maxwell - Boltzmann, Bose-Einstein and Fermi Dirac statistics. Fermi level and its significance. Acoustics: Intensity of sound, Reverberation and design concepts, Ultrasonics: Production, Detection and Applications, NDT methods, Lasers: Properties, Working Principles, Practical Lasers. Photonics: Basics of Solid State lighting, Photo detectors, Solar Cells, Fiber Optics.

Expected outcome

Familiarity with the principles of Physics and its significance in engineering systems and technological advances.

References:

- Aruldhas, G., Engineering Physics, PHI Ltd.
- · Beiser, A., Concepts of Modern Physics, McGraw Hill India Ltd.
- · Bhattacharya and Tandon, Engineering Physics, Oxford India
- · Brijlal and Subramanyam, A Text Book of Optics, S. Chand & Co.
- Dominic and Nahari, A Text Book of Engineering Physics, Owl Books Publishers
- · Hecht, E., Optics, Pearson Education
- · Mehta, N., Applied Physics for Engineers, PHI Ltd
- · Palais, J. C., Fiber Optic Communications, Pearson Education
- Pandey, B. K. and Chathurvedi, S., Engineering Physics, Cengage Learning
- Philip, J., A Text Book of Engineering Physics, Educational Publishers
- · Premlet, B., Engineering Physics, Mc GrawHill India Ltd
- · Sarin, A. and Rewal, A., Engineering Physics, Wiley India Pvt Ltd
- · Sears and Zemansky, University Physics , Pearson
- Vasudeva, A. S., A Text Book of Engineering Physics, S. Chand & Co

	Course Plan		
Module	APJ ABBONTENS L KALAM	Hours	Sem Exan Mark
1	Harmonic Oscillations: Differential equation of damped harmonic oscillation, forced harmonic oscillation and their solutions- Resonance, Q factor, Sharpness of resonance- LCR circuit as an electrical analogue of Mechanical Oscillator (Qualitative)	5	15%
	Waves: One dimensional wave - differential equation and solution. Three dimensional waves - Differential equation & its solution. (No derivation) Transverse vibrations of a stretched string.	4	
п	Interference: Coherence. Interference in thin films and wedge shaped films (Reflected system) Newton's rings-measurement of wavelength and refractive index of liquid Interference filters. Antireflection coating.	5	
	Diffraction Fresnel and Fraunhofer diffraction. Fraunhofer diffraction at a single slit. Plane transmission grating. Grating equation - measurment of wavelength. Rayleigh's criterion for resolution of grating- Resolving power and dispersive power of grating.	4	15%
	FIRST INTERNAL EXAM		
ш	Polarization of Light: Types of polarized light. Double refraction. Nicol Prism. Quarter wave plate and half wave plate. Production and detection of circularly and elliptically polarized light. Induced birefringence- Kerr Cell - Polaroid & applications.	4	150/
	Superconductivity: Superconducting phenomena. Meissner effect. Type-I and Type-II superconductors. BCS theory (qualitative). High temperature superconductors - Applications of superconductors. 2014	5	15%
IV	Quantum Mechanics: Uncertainty principle and its applications- formulation of Time dependent and Time independent Schrödinger equations- physical meaning of wave function- Energy and momentum Operators-Eigen values and functions- One dimensional infinite square well potential .Quantum mechanical Tunnelling (Qualitative)	6	15%
	Statistical Mechanics: Macrostates and Microstates. Phase space. Basic postulates of Maxwell- Boltzmann, Bose-Einstein and Fermi Dirac	3	

9

	statistics. Distribution equations in the three cases (no derivation). Fermi Level and its significance.			
	SECOND INTERNAL EXAM			
v	Acoustics: Intensity of sound- Loudness-Absorption coefficient - Reverberation and reverberation time- Significance of reverberation time- Sabine's formula (No derivation) -Factors affecting acoustics of a building.	3		
	Ultrasonics: Production of ultrasonic waves - Magnetostriction effect and Piezoelectric effect - Magnetostriction oscillator and Piezoelectric oscillator - Detection of ultrasonics - Thermal and piezoelectric methods- Applications of ultrasonics - NDT and medical.	4	20%	
VI	Laser: Properties of Lasers, absorption, spontaneous and stimulated emissions, Population inversion, Einstein's coefficients, Working principle of laser,Optial resonant cavity. Ruby Laser, Helium-Neon Laser, Semiconductor Laser (qualitative). Applications of laser, holography (Recording and reconstruction)	5		
	Photonics: Basics of solid state lighting - LED – Photodetectors - photo voltaic cell, junction & avalanche photo diodes, photo transistors, thermal detectors, Solar cells- I-V characteristics - Optic fibre-Principle of propagation-numerical aperture-optic communication system (block diagram) - Industrial, medical and technological applications of optical fibre. Fibre optic sensors - Basics of Intensity modulated and phase modulated sensors.	5	20%	

10

Course N	No. Course Name	L-T-P - Credits	s Tnt	Year of roduction				
MA20	LINEAR ALGEBRA AND COMPLEX ANALYSIS	3-1-0-4		2016				
Prerequis	ite : Nil							
Course O	biectives							
COURSE	OBJECTIVES							
• To	equip the students with methods of solving a general	system of linear equ	uations.					
• To	• To familiarize them with the concept of Eigen values and diagonalization of a matrix which have							
many applications in Engineering.								
• To	• To understand the basic theory of functions of a complex variable and conformal Transformations.							
	I LAT UNOLO	210/1	Acres 1					
Syllabus			C	1				
Analyticit	y of complex functions-Complex differentiation-	Conformal mapping	igs-Comp	lex				
integration	a-System of linear equations-Eigen value problem	1						
Fynocto	Loutcomo							
At the end	of the course students will be able to							
(i) solve an	v given system of linear equations							
(ii) find the	Eigen values of a matrix and how to diagonalize a matrix	atrix						
(iii) identif	y analytic functions and Harmonic functions.							
(iv)evaluat	e real definite Integrals as application of Residue Theorem	orem						
(v) identify	conformal mappings(vi) find regions that are mapped	l under certain Tran	sformation	IS				
Text Bo	ok:							
Erwin Kr	eyszig: Advanced Engineering Mathematics, 10 th ed. V	Wiley						
Referen	ces:							
1.Dennis g	Zill&Patric D Shanahan-A first Course in Complex A	Analysis with Applic	cations-Jon	es&Bartlet				
Publishers	wel Higher Engineering Methometics, Khenne Public	hora Novy Dolhi						
2.D. S. Ole 3 Linschutz	Val. Higher Engineering Mathematics, Khanna Publis	Education India 200	5					
4 Complex	variables introduction and applications-second edition	n-Mark I Owitz-Ca	mbridge Pi	ublication				
	Course Plan							
				Sem. Exam				
Module	Contents		Hours	Marks				
	Complex differentiation Text 1[13.3,13.4]							
	Limit, continuity and derivative of complex function	ns	3					
	Analytic Functions 2014	1. Jan 19	_					
	Analytic Functions		2					
I	Cauchy–Riemann Equation(Proof of sufficient cond	ition of	2					
	analyticity & C R Equations in polar form not requir	ed)-Laplace's	2					
	Equation							
			2					
	Harmonic functions, Harmonic Conjugate		2	150/				
	Conformal manning Taut 4[47.4.47.4]			15%				
	Comotry of Applytic functions Conformal Manaira		1					
тт	Geometry of Analytic functions conformal wapping	<i>a</i>	1					
11	Manning $w = \sigma^2$ conformality of $w = \sigma^2$		2					
	wapping $w - z$ conformality of $w = e$.			15%				
				1 J 70				

	The mapping $w = z + \frac{1}{z}$		
	Properties of $w = \frac{1}{z}$	1	
	Circles and straight lines, extended complex plane, fixed points		
	Special linear fractional Transformations, Cross Ratio, Cross Ratio property-Mapping of disks and half planes	3	
	Conformal mapping by $w = \sin z \& w = \cos z$	3	
	functions in Engineering)	A data	
	FIRST INTERNAL EXAMINATION		
	Complex Integration. Text 1[14.1-14.4] [15.4&16.1]		
	Definition Complex Line Integrals, First Evaluation Method, Second	2	
	Evaluation Method	2	
	path(without proof), Cauchy's Integral Theorem for Multiply	Z	15%
	Connected Domains (without proof)		1370
III	Cauchy's Integral Formula- Derivatives of Analytic	2	
	Functions(without proof)Application of derivative of Analytical		
	Taylor and Maclaurin series (without proof). Power series as Taylor		
	series, Practical methods(without proof)	2	
		2	
	Laurent's series (Without proof) Residue Integration Text 1 [16 2-16 4]	2	15%
	Singularities, Zeros, Poles, Essential singularity, Zeros of analytic	2	1.5 /0
	functions		
		1	
IV	Residue Integration Method, Formulas for Residues, Several singularities inside the contour Residue Theorem.	4	
	Evaluation of Real Integrals (i) Integrals of rational functions of	3	
	$\sin\theta$ and $\cos\theta$ (ii)Integrals of the type $\int f(x)dx$ (Type I, Integrals		
	(mans 0 to .co.) 20 [-0]		
	from 0 to ∞) (Assignment : Application of Complex integration in Engineering)		
	SECOND INTERNAL EXAMINATION		
			20%
	Linear system of Equations Text 1(7.3-7.5)		
	Linear systems of Equations, Coefficient Matrix, Augmented Matrix	1	
V	Gauss Elimination and back substitution, Elementary row operations,		
	Row equivalent systems, Gauss elimination-Three possible cases, Row Echelon form and Information from it.	5	

	Linear independence-rank of a matrix	2		
	Vector Space-Dimension-basis-vector space \mathbb{R}^3			
	Solution of linear systems, Fundamental theorem of non- homogeneous linear systems(Without proof)-Homogeneous linear systems (Theory only	1		
	Matrix Eigen value Problem Text 1.(8.1,8.3 &8.4)		20%	
	Determination of Eigen values and Eigen vectors-Eigen space	3		
VI	Symmetric, Skew Symmetric and Orthogonal matrices –simple properties (without proof)	2		
	Basis of Eigen vectors- Similar matrices Diagonalization of a matrix- Quadratic forms- Principal axis theorem(without proof)	4		
	(Assignment-Some applications of Eigen values(8.2))			
END SEMESTER EXAM				

QUESTION PAPER PATTERN:

Maximum Marks : 100

Exam Duration: 3 hours

The question paper will consist of 3 parts.

Part A will have 3 questions of 15 marks each uniformly covering modules I and II. Each question may have two sub questions.

Part B will have 3 questions of 15 marks each uniformly covering modules III and IV. Each question may have two sub questions.

Part C will have 3 questions of 20 marks each uniformly covering modules V and VI. Each question may have three sub questions.

2014

Any two questions from each part have to be answered.

Course N	o. Course Name	L-T-P - Credits		Year of			
			Int	roduction			
MA202	2 Probability distributions,	3-1-0-4		2016			
	Transforms and Numerical Methods						
Prerequis	ite: Nil						
Course O	bjectives						
• To	introduce the concept of random variables, probab	oility distributions,	specific	c discrete			
and	and continuous distributions with practical application in various Engineering and social						
life situations.							
• To	• To know Laplace and Fourier transforms which has wide application in all Engineering						
COL	irses.	A N					
• To	enable the students to solve various engineering	problems using nur	nerical	methods.			
Syllabus	I IN HAZED CT	TV					
Discrete rat	ndom variables and Discrete Probability Distribution	n.					
Continuous	Random variables and Continuous Probability Dist	ribution.					
Fourier tra	nsforms.						
Laplace T	ansforms.						
Numerical	methods-solution of Algebraic and transcendental	Equations, Interpo	lation.				
Numerica	l solution of system of Equations. Numerical	Integration, Num	erical	solution of			
ordinary d	ifferential equation of First order.						
F							
Expected A fter the	outcome.	ave concept of					
(i) Discorr	completion of the course student is expected to ha	ave concept of	r, diatai				
(i) Discre	as and Equipier transforms and apply them, in their	a special probabilit	y distri	butions.			
(II) Lapia	real methods and their applications in solving Fu	Engineering branc	П 9				
(111) 110111	encal methods and their applications in solving El	igneering problem	S .				
Toxt Boo	lte.						
1 Mi	ller and Freund's "Probability and statistics for Fn	gineers"-Pearson-F	ighth F	Edition			
2 Fm	vin Kreyszig "Advanced Engineering Mathematic	s" 10 th edition Wi	lev 20	15			
2. 1.1	vin Rieyszig, Auvaneed Engineering Mathematic	, io califon, wi	licy, 20	15.			
Reference	es:						
1. V.	Sundarapandian, "Probability, Statistics and Oueu	ing theory", PHILe	earning	2009			
2. C.	Ray Wylie and Louis C. Barrett, "Advanced Engineeri	ng Mathematics"-Six	th Editi	on.			
3. Jay	L. Devore, "Probability and Statistics for Engineering	and Science"-Eight l	Edition.				
4. Ste	ven C. Chapra and Raymond P. Canale, "Numeric	al Methods for Eng	gineers'	'-Sixth			
Edition-Mc Graw Hill							
2014							
Course Plan							
Module	Contents	H	Iours	Sem. Exam Marks			
	Discrete Probability Distributions. (Relevant to	pics in					
	section 4.1,4,2,4.4,4.6 Text1)						
Discrete Random Variables, Probability distribution function,							
_	Cumulative distribution function.						
I	Mean and Variance of Discrete Probability Distri	bution.	2				
	Binomial Distribution-Mean and variance.		2				
	Poisson Approximation to the Binomial Distribut	ion. Poisson	2				
	distribution-Mean and variance.			150/			
				15%			

section 5.1.5.2.5.5.5.7 Text1) 2 Continuous Random Variable, Probability density function, Cumulative density function, Mean and variance. 2 Normal Distribution, Mean and variance. 2 Exponential Distribution, Mean and variance. 2 Exponential Distribution, Mean and variance. 2 Fourier Integrals and transforms. (Relevant topics in section 11.7, 11.8, 11.9 Text2) 15% Fourier Integrals. Fourier integral theorem (without proof). Fourier Transform and inverse transform. 3 Fourier Integrals. Fourier integral theorem (without proof). Fourier Transform and inverse transform. 3 Fourier Integrals. Fourier integral theorem (without proof). Fourier Sine & Cosine Transform, inverse transform. 3 Fourier Integrals. Fourier integral, fiverse transform. 3 Fourier Sine & Cosine Transform, inverse transform. 3 Fourier Sine & Cosine Transform, inverse transform. 3 IV Transform of derivative and Integral, Inverse Laplace transform. Solution of ordinary differential equation using Laplace transforms. 2 Unit step function, second shifting theorem. 2 V Numerical Techniques. (Relevant topics in section.19.1,19.2,19.3 Text2) 20% Solution of equations by Iteration, Newton- Raphson Method. 2 V Interpolation of Equal intervals-Lexant difference formula. Interpolation of Equal intervals-Lagrange's Interpolation formula. 20%		Continuous Probability Distributions. (Relevant topics in		
II Continuous Random Variable, Probability density function, Cumulative density function, Mean and variance. Normal Distribution, Mean and variance (without proof). 4 Uniform Distribution, Mean and variance. 2 Exponential Distribution, Mean and variance. 2 FIRST INTERNAL EXAMINATION 15% Fourier Integrals and transforms. (Relevant topics in section 11.7, 11.8, 11.9 Text2) 15% Fourier Integrals, Fourier integral theorem (without proof). 3 Fourier Transform and inverse transform. 3 Fourier Sine & Cosine Transform, inverse transform. 3 Fourier Transforms, (Relevant topics in section 6.1,6.2,6.3,6.5,6.6 Text2) 15% Laplace transforms, linearity, first shifting Theorem. 3 Transform of derivative and Integral, Inverse Laplace transform, Solution of ordinary differential equation using Laplace transform. 2 Unit step function, second shifting theorem. 2 Convolution Theorem (without proof). 2 Differentiation and Integration of transforms. 2 Solution Of equations by Iteration, Newton- Raphson Method. 2 V Interpolation of Locgual intervals-Lagrange's Interpolation formula, Newton's Backward difference formula. 3 Solution of Locgual intervals-Lagrange's Interpolation formula, Newton's Backward di		section 5.1,5.2,5.5,5.7 Text1)		
II Cumulative density function, Mean and variance. Normal Distribution, Mean and variance. Exponential Distribution, Mean and variance. Exponential Distribution, Mean and variance. Exponential Distribution, Mean and variance. 2 1 III Fourier Integrals and transforms. (Relevant topics in section 11.7, 11.8, 11.9 Text2) Fourier Integrals. Fourier integral theorem (without proof). Fourier Sine & Cosine Transform. Fourier Sine & Cosine Transform. Fourier Sine & Cosine Transform. Fourier Sine & Cosine Transform. Solution of derivative and Integral, Inverse Laplace transform. Solution of ordinary differential equation using Laplace transform. 15% IV Transform of dirivative and Integral, Inverse Laplace transform. Solution of ordinary differential equation using Laplace transform. 15% IV Transform of derivative and Integral, Inverse Laplace transform. Unit step function, second shifting theorem. SECOND INTERNAL EXAMINATION 2 V Numerical Techniques. (Relevant topics in section.19.1,12,2,19.3 Text2) 20% VI Numerical Techniques. (Relevant topics in section.19.1,12,2,19.3 Text2) 20% VI Numerical Techniques. (Relevant topics in section 19.5,20,1,20,3,2,1,1 Text2) 20% Solution of Inear System - Gauss Elimination, Gauss Seidal Interpolation of Local intervals-Lagrange's Interpolation formula, Newton's Backward difference formula. 3 VI Numerical Icechniques. (Relevant topics in section 1		Continuous Random Variable, Probability density function,	2	
II Normal Distribution, Mean and variance (without proof). 4 Uniform Distribution, Mean and variance. 2 Exponential Distribution, Mean and variance. 2 III Fourier Integrals and transforms. (Relevant topics in section 11.7, 11.8, 11.9 Text2) 15% Fourier Integrals. Fourier integral theorem (without proof). 3 Fourier Transform and inverse transform. 3 Fourier Sine & Cosine Transform, inverse transform. 3 Fourier Sine & Cosine Transform, inverse transform. 3 Fourier Integrals. 15% III Laplace transforms, (Relevant topics in section 6.1,6.2,6.3,6.5,6.6 Text2) 15% Laplace transforms, linearity, first shifting Theorem. 3 Transform of derivative and Integral, Inverse Laplace 4 transform, Solution of ordinary differential equation using Laplace transform. 2 Unit step function, second shifting theorem. 2 Convolution Theorem (without proof). 2 Differentiation and Integration of transforms. 2 Solution Of equations by Iteration, Newton- Raphson Method. 2 Interpolation of Lucqual intervals-Lagrange 's Interpolation formula. 3 Interpolation of Equal intervals-Lagrange 's Interpolation f		Cumulative density function, Mean and variance.		
Imiform Distribution.Mean and variance. 2 Exponential Distribution, Mean and variance. 2 Image: State of the state	II	Normal Distribution, Mean and variance (without proof).	4	
Exponential Distribution, Mean and variance. 2 ISSE INTERNAL EXAMINATION FIRST INTERNAL EXAMINATION Fourier Integrals, and transforms. (Relevant topics in section 11.7, 11.8, 11.9 Text2) Fourier Integrals, Fourier integral theorem (without proof). Fourier Transform and inverse transform. Fourier Integrals, Fourier integral theorem (without proof). Fourier Sine & Cosine Transform, inverse transform. Fourier Integrals, Fourier integral theorem (without proof). Fourier Sine & Cosine Transform, inverse transform. Image: Cosine Transform, inverse transform. Unit step function, second shifting theorem.<		Uniform Distribution.Mean and variance.	2	
If ST INTERNAL EXAMINATION FOURIER INTEGRAL EXAMINATION FOURIER Integrals and transforms. (Relevant topics in section 11.7, 11.8, 11.9 Text2) Fourier Integrals. Fourier integral theorem (without proof). Fourier Transform and inverse transform. Fourier Transform, inverse transform. Fourier Transforms. (Relevant topics in section 6.1,6.2,6.3,6.5,6.6 Text2) Laplace transforms. Inearity, first shifting Theorem. Transform of derivative and Integral, Inverse Laplace transform. Solution of ordinary differential equation using Laplace transform. Unit step function, second shifting theorem. Q Convolution Theorem (without proof). Q SECOND INTERNAL EXAMINATION V Numerical Techniques. (Relevant topics in section.19.1,19.2,19.3 Text2) Solution of Equal intervals-Lagrange's Interpolation formula. Interpolation of Equal intervals-Lagrange's Interpolation formula. <td colspan="</th> <th></th> <td>Exponential Distribution, Mean and variance.</td> <td>2</td> <td></td>		Exponential Distribution, Mean and variance.	2	
FIRST INTERNAL EXAMINATION FOURIER Integrals and transforms. (Relevant topics in section 11.7, 11.8, 11.9 Text2) Fourier Integrals. Fourier integral theorem (without proof). Fourier Transform and inverse transform. Fourier Integrals. Fourier integral theorem (without proof). Fourier Transform and inverse transform. Superior Transform (Relevant topics in section 6.1,6.2,6.3,6.5,6.6 Text2) Laplace transforms. (Relevant topics in section 6.1,6.2,6.3,6.5,6.6 Text2) 15% Laplace Transforms. linearity, first shifting Theorem. 3 Transform of derivative and Integral, Inverse Laplace transform. Solution of ordinary differential equation using Laplace transform. 4 Unit step function, second shifting theorem. 2 Convolution Theorem (without proof). 2 Differentiation and Integration of transforms. 2 Solution Of equations by Iteration, Newton- Raphson Method. 2 V Numerical Techniques. (Relevant topics in section formula. Interpolation of Lapla intervals-Lagrange's Interpolation formula. Interpolation of Equal intervals-Lagrange's Interpolation formula. Newton's Backward difference formula. 20% VI Numerical Techniques. (Relevant topics in section 19.5,20.1,20.3, 21.1 Text2) 20% Solution to linear System- Gauss Elimination, Gauss Seidal Iteration Method. Numerical solution of firstorder ODE-Euler method, Runge				
THERY LEXAMINATION FIRST INTERNAL EXAMINATION INTERNAL TEXAMINATION INTERNAL EXAMINATION INTERNAL EXAMINATION <			A	15%
Fourier Integrals and transforms. (Relevant topics in section 11.7, 11.8, 11.9 Text2) 11.7, 11.8, 11.9 Text2) Fourier Integrals. Fourier integral theorem (without proof). 3 Fourier Sine & Cosine Transform, inverse transform. 3 Fourier Sine & Cosine Transform, inverse transform. 3 II. 11.8, 11.9 Text2) Fourier Sine & Cosine Transform, inverse transform. 3 IV Laplace transforms. (Relevant topics in section 6.1, 6.2, 6.3, 6.5, 6.6 Text2) 15% Laplace Transforms, linearity, first shifting Theorem. 3 Transform of derivative and Integral, Inverse Laplace transform, Solution of ordinary differential equation using Laplace transform. 2 Unit step function, second shifting theorem. 2 Convolution Theorem (without proof). 2 Differentiation and Integration of transforms. 2 Solution Of equations by Iteration, Newton- Raphson Method. 2 V Interpolation of Equal intervals-Newton's forward difference formula. 3 Interpolation of Equal intervals-Newton's forward difference formula. 20% VI Numerical Techniques. (Relevant topics in section 19.5, 20.1, 20.3, 21.1 Text2) 20% Solution to linear System- Gauss Elimination, Gauss Seidal 18 18 Iter		FIRST INTERNAL EXAMINATION	V1	1.50/
III Fourier Integrals. Fourier integral theorem (without proof). 3 Fourier Transform and inverse transform. 3 Fourier Sine & Cosine Transform, inverse transform. 3 Fourier Sine & Cosine Transform, inverse transform. 3 III Fourier Transforms. (Relevant topics in section 15% Laplace transforms, linearity, first shifting Theorem. 3 Transform of derivative and Integral, Inverse Laplace 4 transform, Solution of ordinary differential equation using 4 Laplace transforms. 2 Convolution Theorem (without proof). 2 Differentiation and Integration of transforms. 2 Solution Of equations by Iteration, Newton- Raphson Method. 2 Interpolation of Equal intervals-Lagrange's Interpolation formula. 20% Interpolation of Equal intervals-Newton's forward difference formula. 20% VI Numerical Techniques. (Relevant topics in section 19.5,20.1,20.3,21.1 Text2) 20% Solution to linear System- Gauss Elimination, Gauss Seidal 3 3 Iteration Method. 3 3 VI Numerical solution of firstorder ODE-Euler method, 3 3 Numerical solution of firstorder ODE-Euler method, 3 <		Fourier integrals and transforms. (Relevant topics in section	1	15%
III Fourier Integrals. Fourier integral theorem (without proof). 3 Fourier Sine & Cosine Transform, inverse transform. 3 Fourier Sine & Cosine Transform, inverse transform. 3 Image: Sine & Cosine Transform, Sine and Integral, Inverse Laplace transform, Solution of ordinary differential equation using Laplace transform. 2 Image: Sine & Sine Mathematical Techniques, Calevant topics in section 19,1,19,2,19,3 Text2) 2 Solution Of		11.7, 11.8, 11.9 Text2)	2	
Fourier Transform and inverse transform. 3 Fourier Sine & Cosine Transform, inverse transform. 3 Image: Second	III	Fourier Integrals. Fourier integral theorem (without proof).	-3	
Fourier Sine & Cosine Transform, inverse transform. 3 Image: Cosine Transforms. (Relevant topics in section 6.1,6.2,6.3,6.5,6.6 Text2) 15% Laplace transforms. (Relevant topics in section 6.1,6.2,6.3,6.5,6.6 Text2) 3 Laplace Transforms. linearity, first shifting Theorem. 3 Transform of derivative and Integral, Inverse Laplace transform. Solution of ordinary differential equation using Laplace transform. 4 Unit step function, second shifting theorem. 2 Convolution Theorem (without proof). 2 Differentiation and Integration of transforms. 2 Second INTERNAL EXAMINATION 2 V Numerical Techniques.(Relevant topics in section 19.1,19.2,19.3 Text2) 20% Solution Of equations by Iteration, Newton- Raphson Method. 2 V Interpolation of Unequal intervals-Lagrange's Interpolation formula. 2 Interpolation of Equal intervals-Newton's forward difference formula. 3 20% VI Numerical Techniques. (Relevant topics in section 19.5,20.1,20.3, 21.1 Text2) 2 20% Solution to linear System- Gauss Elimination, Gauss Seidal Iteration Method. 3 3 Iteration Method. 3 3 3 Interpolation of Equal intervals-Response 1/3 Rule.		Fourier Transform and inverse transform.	3	
Laplace transforms. (Relevant topics in section 6.1,6.2,6.3,6.5,6.6 Text2) 15% Laplace Transforms, linearity, first shifting Theorem. 3 Transform of derivative and Integral, Inverse Laplace transform, Solution of ordinary differential equation using Laplace transform. 4 Unit step function, second shifting theorem. 2 Convolution Theorem (without proof). 2 Differentiation and Integration of transforms. 2 Second INTERNAL EXAMINATION 20% V Numerical Techniques. (Relevant topics in section.19.1,19.2,19.3 Text2) 20% Solution of equations by Iteration, Newton- Raphson Method. 2 V Interpolation of Unequal intervals-Lagrange's Interpolation formula. 2 Interpolation of Equal intervals-Newton's forward difference formula, Newton's Backward difference formula. 3 VI Numerical Techniques. (Relevant topics in section 19.5,20,1,20.3, 21.1 Text2) 20% Solution to linear System- Gauss Elimination, Gauss Seidal Iteration Method. 3 3 VI Numerical solution of Firstorder ODE-Euler method, Runge-Kutta Method (fourth order). 3 3		Fourier Sine & Cosine Transform, inverse transform.	3	
Laplace transforms. (Relevant topics in section 6.1,6.2,6.3,6.5,6.6 Text2) 13% Laplace Transforms, linearity, first shifting Theorem. 3 IV Transform of derivative and Integral, Inverse Laplace transform, Solution of ordinary differential equation using Laplace transform. 4 Unit step function, second shifting theorem. 2 Convolution Theorem (without proof). 2 Differentiation and Integration of transforms. 2 Second Integration of Relevant topics in section.19.1,19.2,19.3 Text2) 20% Solution Of equations by Iteration, Newton- Raphson Method. 2 V Interpolation of Unequal intervals-Lagrange's Interpolation formula. Interpolation of Equal intervals-Newton's forward difference formula, Newton's Backward difference formula. 3 VI Numerical Techniques. (Relevant topics in section 19.5,20.1,20.3, 21.1 Text2) 20% Solution to linear System- Gauss Elimination, Gauss Seidal Iteration Method. 3 20% VI Numerical Integration-Trapezoidal Rule, Simpson's 1/3 Rule. Numerical solution of firstorder ODE-Euler method, Runge-Kutta Method (fourth order). 3 3				150/
Image: Construct the section of the sectin of the section of the section of the section of the		I anlage transforms (Delevent tonics in section		13%
0.1.0.2.0.3.0.3.0.0 Fext2) Laplace Transforms, linearity, first shifting Theorem. 3 Transform of derivative and Integral, Inverse Laplace transform, Solution of ordinary differential equation using Laplace transform. 4 IV transform, Solution of ordinary differential equation using Laplace transform. 2 Unit step function, second shifting theorem. 2 Convolution Theorem (without proof). 2 Differentiation and Integration of transforms. 2 SECOND INTERNAL EXAMINATION Numerical Techniques.(Relevant topics in section 19.1,19.2,19.3 Text2) Solution Of equations by Iteration, Newton- Raphson Method. 2 V Interpolation of Unequal intervals-Lagrange's Interpolation formula. 2 Interpolation of Equal intervals-Newton's forward difference formula. 3 VI Numerical Techniques. (Relevant topics in section 19.5,20.1,20.3, 21.1 Text2) 20% Solution to linear System- Gauss Elimination, Gauss Seidal 3 3 VI Iteration Method. 3 3 Numerical solution of firstorder ODE-Euler method, Runge-Kutta Method (fourth order). 3 3		6 1 6 2 6 2 6 5 6 6 Text2)		
Image: Laplace Transforms, linearity, first shifting Theorem. 3 IV Transform of derivative and Integral, Inverse Laplace transform, Solution of ordinary differential equation using Laplace transform. 4 Unit step function, second shifting theorem. 2 Convolution Theorem (without proof). 2 Differentiation and Integration of transforms. 2 SECOND INTERNAL EXAMINATION 20% section.19.1,19.2,19.3 Text2) 20% Solution Of equations by Iteration, Newton- Raphson Method. 2 V Interpolation of Equal intervals-Lagrange's Interpolation formula. 2 Interpolation of Equal intervals-Newton's forward difference formula. 3 20% VI Numerical Techniques. (Relevant topics in section 19.5, 20.1, 20.3, 21.1 Text2) 20% Solution to inear System- Gauss Elimination, Gauss Seidal 3 20% VI Numerical Integration-Trapezoidal Rule, Simpson's 1/3 Rule. 3 Numerical solution of firstorder ODE-Euler method, Runge-Kutta Method (routh order). 3 3		0.1, 0.2, 0.5, 0.5, 0.0 $10x(2)$		
Image: Indeptite transform, Sintaining Indofeni. 3 IV Transform of derivative and Integral, Inverse Laplace transform, Solution of ordinary differential equation using Laplace transform. 4 IV Unit step function, second shifting theorem. 2 Convolution Theorem (without proof). 2 Differentiation and Integration of transforms. 2 SECOND INTERNAL EXAMINATION 20% section.19.1,19.2,19.3 Text2) 20% Solution Of equations by Iteration, Newton- Raphson Method. 2 V Interpolation of Unequal intervals-Lagrange's Interpolation formula. 2 Interpolation of Equal intervals-Newton's forward difference formula. 3 20% VI Interpolation of Equal intervals-Newton's forward difference formula. 3 20% VI Numerical Techniques. (Relevant topics in section 19.5, 20.1, 20.3, 21.1 Text2) 20% 20% VI Iteration Method. 3 3 3 Iteration Method. 3 3 3 3 VI Iteration of firstorder ODE-Euler method, 3 3 3 3		Laplace Transforms linearity first shifting Theorem	2	
IV Transform of derivative and Integral, Inverse Laplace transform, Solution of ordinary differential equation using Laplace transform. 4 IV Unit step function, second shifting theorem. 2 Convolution Theorem (without proof). 2 Differentiation and Integration of transforms. 2 SECOND INTERNAL EXAMINATION 2 V Numerical Techniques. (Relevant topics in section. 19.1, 19.2, 19.3 Text2) 20% Solution Of equations by Iteration, Newton- Raphson Method. 2 V Interpolation of Unequal intervals-Lagrange's Interpolation formula. 2 Interpolation of Equal intervals-Newton's forward difference formula. 3 20% VI Numerical Techniques. (Relevant topics in section 19.5, 20.1, 20.3, 21.1 Text2) 20% Solution to linear System- Gauss Elimination, Gauss Seidal Iteration Method. 3 20% VI Numerical Techniques. (Relevant topics in section 19.5, 20.1, 20.3, 21.1 Text2) 3 3 Solution to linear System- Gauss Elimination, Gauss Seidal Iteration Method. 3 3 Numerical solution of firstorder ODE-Euler method, Runge-Kutta Method (fourth order). 3 3		Laplace Transforms, meanty, first simulig Theorem.	3	
IV Transform, Solution of ordinary differential equation using Laplace transform. 4 Unit step function, second shifting theorem. 2 Convolution Theorem (without proof). 2 Differentiation and Integration of transforms. 2 SECOND INTERNAL EXAMINATION SECOND INTERNAL EXAMINATION V Numerical Techniques. (Relevant topics in section. 19.1, 19.2, 19.3 Text2) Solution Of equations by Iteration, Newton- Raphson Method. V Interpolation of Unequal intervals-Lagrange's Interpolation formula. 2 Interpolation of Equal intervals-Newton's forward difference formula, Newton's Backward difference formula. 3 VI Numerical Techniques. (Relevant topics in section 19.5, 20.1, 20.3, 21.1 Text2) 20% Solution to linear System- Gauss Elimination, Gauss Seidal Iteration Method. 3 3 VI Numeric Integration-Trapezoidal Rule, Simpson's 1/3 Rule. 3 3 Numerical solution of firstorder ODE-Euler method, Runge-Kutta Method (fourth order). 3 3		Transform of derivative and Integral Inverse Lanlace	1	
IV Italistorii, solution of ordinary unreference equation using Laplace transform. 2 Unit step function, second shifting theorem. 2 Convolution Theorem (without proof). 2 Differentiation and Integration of transforms. 2 SECOND INTERNAL EXAMINATION SECOND INTERNAL EXAMINATION V Numerical Techniques. (Relevant topics in section. 19.1,19.2,19.3 Text2) 20% Solution Of equations by Iteration, Newton- Raphson Method. 2 V Interpolation of Unequal intervals-Lagrange's Interpolation formula. 2 Interpolation of Equal intervals-Newton's forward difference formula. 3 Interpolation to Equal intervals-Newton's forward difference formula. 20% VI Numerical Techniques. (Relevant topics in section 19.5,20.1,20.3, 21.1 Text2) 20% Solution to linear System- Gauss Elimination, Gauss Seidal 3 3 VI Iteration Method. 3 3 Numerical Integration-Trapezoidal Rule, Simpson's 1/3 Rule. 3 3 Numerical solution of firstorder ODE-Euler method, Runge-Kutta Method (fourth order). 3 3	137	transform. Solution of ordinary differential equation using	4	
Laplace function. 2 Unit step function, second shifting theorem. 2 Convolution Theorem (without proof). 2 Differentiation and Integration of transforms. 2 SECOND INTERNAL EXAMINATION 2 V Numerical Techniques.(Relevant topics in section. 19.1, 19.2, 19.3 Text2) 20% Solution Of equations by Iteration, Newton- Raphson Method. 2 V Interpolation of Unequal intervals-Lagrange's Interpolation formula. 2 Interpolation of Equal intervals-Newton's forward difference formula. 3 VI Numerical Techniques. (Relevant topics in section 19.5, 20.1, 20.3, 21.1 Text2) 20% Solution to linear System- Gauss Elimination, Gauss Seidal 3 3 Iteration Method. 3 3 Numerical solution of firstorder ODE-Euler method, 3 3 Runge-Kutta Method (fourth order). 3 3	1 V	Laplace transform		
Unit step function, second shifting theorem. 2 Convolution Theorem (without proof). 2 Differentiation and Integration of transforms. 2 SECOND INTERNAL EXAMINATION 20% Solution Of equations by Iteration, Newton- Raphson Method. 2 V Interpolation of Unequal intervals-Lagrange's Interpolation formula. 2 Interpolation of Equal intervals-Newton's forward difference formula. 3 Interpolation of Equal intervals-Newton's forward difference formula. 3 VI Numerical Techniques. (Relevant topics in section 19.5,20.1,20.3, 21.1 Text2) 20% Solution to linear System- Gauss Elimination, Gauss Seidal 18 3 20% VI Numerical Techniques. (Relevant topics in section 19.5,20.1,20.3, 21.1 Text2) 20% Solution to linear System- Gauss Elimination, Gauss Seidal 18 3 20% VI Numerical Techniques. (Relevant topics in section 19.5,20.1,20.3, 21.1 Text2) 3 3 Solution to linear System- Gauss Elimination, Gauss Seidal 18 3 3 Iteration Method. 3 3 3 Numerical solution of firstorder ODE-Euler method, 8 3 3 Numerical solution of firstorder ODE-Euler method, 8 3 <				
V Convolution Theorem (without proof). 2 Differentiation and Integration of transforms. 2 SECOND INTERNAL EXAMINATION V SECOND INTERNAL EXAMINATION V Solution Of equations by Iteration, Newton- Raphson Method. 2 V Interpolation of Unequal intervals-Lagrange's Interpolation formula. 2 Interpolation of Equal intervals-Newton's forward difference formula. 3 20% VI Numerical Techniques. (Relevant topics in section 19.5, 20.1, 20.3, 21.1 Text2) 20% Solution to linear System- Gauss Elimination, Gauss Seidal 18 3 20% VI Iteration Method. 3 3 VI Iteration Method. 3 3 Numerical solution of firstorder ODE-Euler method, 8 3 3 Iteration Method. 3 3 3 Numerical solution of firstorder ODE-Euler method, 8 3 3 Numerical solution of firstorder ODE-Euler method, 8 3 3		Unit stop function second shifting theorem	2	
Convolution Theorem (without proof). 2 Differentiation and Integration of transforms. 2 SECOND INTERNAL EXAMINATION SECOND INTERNAL EXAMINATION V Numerical Techniques.(Relevant topics in section.19.1,19.2,19.3 Text2) Solution Of equations by Iteration, Newton- Raphson Method. 2 V Interpolation of Unequal intervals-Lagrange's Interpolation formula. 2 Interpolation of Equal intervals-Newton's forward difference formula. 3 Interpolation of Equal intervals-Newton's forward difference formula. 3 VI Numerical Techniques. (Relevant topics in section 19.5,20.1,20.3, 21.1 Text2) 20% Solution to linear System- Gauss Elimination, Gauss Seidal 18 3 20% VI Iteration Method. 3 3 Numerical solution of firstorder ODE-Euler method, Runge-Kutta Method (fourth order). 3 3		Ont step function, second sinting theorem.	Z	
V Differentiation and Integration of transforms. 2 SECOND INTERNAL EXAMINATION 20% Section.19.1,19.2,19.3 Text2) 20% Solution Of equations by Iteration, Newton- Raphson Method. 2 V Interpolation of Unequal intervals-Lagrange's Interpolation formula. 2 Interpolation of Equal intervals-Newton's forward difference formula. 3 Numerical Techniques. (Relevant topics in section 19.5,20.1,20.3, 21.1 Text2) 20% VI Numerical Techniques. (Relevant topics in section 19.5,20.1,20.3, 21.1 Text2) 20% Solution to linear System- Gauss Elimination, Gauss Seidal 3 3 Iteration Method. 3 3 Numerical solution of firstorder ODE-Euler method, 3 3 Numerical solution of firstorder ODE-Euler method, 3 3 Runge-Kutta Method (fourth order). 3		Convolution Theorem (without proof)	2	
Differentiation and Integration of transforms. 2 SECOND INTERNAL EXAMINATION Numerical Techniques.(Relevant topics in section.19.1,19.2,19.3 Text2) 20% Solution Of equations by Iteration, Newton- Raphson Method. 2 V Interpolation of Unequal intervals-Lagrange's Interpolation formula. 2 Interpolation of Equal intervals-Newton's forward difference formula. 3 Numerical Techniques. (Relevant topics in section 19.5,20.1,20.3, 21.1 Text2) 20% VI Numerical Techniques. (Relevant topics in section 19.5,20.1,20.3, 21.1 Text2) 20% Solution to linear System- Gauss Elimination, Gauss Seidal Iteration Method. 3 20% VI Numeric Integration-Trapezoidal Rule, Simpson's 1/3 Rule. 3 3 Numerical solution of firstorder ODE-Euler method, Runge-Kutta Method (fourth order). 3 3		Convolution Theorem (without proof).		
SECOND INTERNAL EXAMINATION Numerical Techniques. (Relevant topics in section. 19.1, 19.2, 19.3 Text2) 20% Solution Of equations by Iteration, Newton- Raphson Method. 2 Interpolation of Unequal intervals-Lagrange's Interpolation formula. 2 Interpolation of Equal intervals-Newton's forward difference formula. 2 Numerical Techniques. (Relevant topics in section 19.5, 20.1, 20.3, 21.1 Text2) 20% VI Numerical Techniques. (Relevant topics in section 19.5, 20.1, 20.3, 21.1 Text2) 20% Solution to linear System- Gauss Elimination, Gauss Seidal 14 3 20% VI Iteration Method. 3 3 Numerical solution of firstorder ODE-Euler method, Runge-Kutta Method (fourth order). 3 3		Differentiation and Integration of transforms.	2	
Numerical Techniques.(Relevant topics in section.19.1,19.2,19.3 Text2) 20% Solution Of equations by Iteration, Newton- Raphson Method. 2 Interpolation of Unequal intervals-Lagrange's Interpolation formula. 2 Interpolation of Equal intervals-Newton's forward difference formula. 3 Numerical Techniques. (Relevant topics in section 19.5,20.1,20.3, 21.1 Text2) 20% Solution to linear System- Gauss Elimination, Gauss Seidal 3 Iteration Method. 3 Numerical solution of firstorder ODE-Euler method, 3 3		SECOND INTERNAL EXAMINATION		
Vsection.19.1,19.2,19.3 Text2)VSolution Of equations by Iteration, Newton- Raphson Method.2Interpolation of Unequal intervals-Lagrange's Interpolation formula. Interpolation of Equal intervals-Newton's forward difference formula, Newton's Backward difference formula.2Numerical Techniques. (Relevant topics in section 19.5,20.1,20.3, 21.1 Text2) Solution to linear System- Gauss Elimination, Gauss Seidal Iteration Method. Numerical solution of firstorder ODE-Euler method, Runge-Kutta Method (fourth order).20%		Numerical Techniques.(Relevant topics in		20%
VSolution Of equations by Iteration, Newton- Raphson Method.2VInterpolation of Unequal intervals-Lagrange's Interpolation formula. Interpolation of Equal intervals-Newton's forward difference formula, Newton's Backward difference formula.2Numerical Techniques. 19.5,20.1,20.3, 21.1 Text2) Solution to linear System- Gauss Elimination, Gauss Seidal Iteration Method. Numerical solution of firstorder ODE-Euler method, Runge-Kutta Method (fourth order).20%		section.19.1,19.2,19.3 Text2)		
V Solution Of equations by Iteration, Newton- Raphson Method. 2 V Interpolation of Unequal intervals-Lagrange's Interpolation formula. 2 Interpolation of Equal intervals-Newton's forward difference formula, Newton's Backward difference formula. 3 Numerical Techniques. (Relevant topics in section 19.5,20.1,20.3, 21.1 Text2) 20% Solution to linear System- Gauss Elimination, Gauss Seidal 3 Iteration Method. 3 Numerical solution of firstorder ODE-Euler method, Runge-Kutta Method (fourth order). 3				
V Interpolation of Unequal intervals-Lagrange's Interpolation 2 formula. Interpolation of Equal intervals-Newton's forward difference 3 formula, Newton's Backward difference formula. 3 Numerical Techniques. (Relevant topics in section 20% 19.5,20.1,20.3, 21.1 Text2) 3 Solution to linear System- Gauss Elimination, Gauss Seidal 3 Iteration Method. 3 Numerical solution of firstorder ODE-Euler method, 3 Numerical solution of firstorder ODE-Euler method, 3 Solution to Instruction of the state of the stat		Solution Of equations by Iteration, Newton- Raphson Method.	2	
Interpolation of Unequal intervals-Lagrange's Interpolation 2 formula. Interpolation of Equal intervals-Newton's forward difference 3 formula, Newton's Backward difference formula. 3 Numerical Techniques. (Relevant topics in section 20% 19.5,20.1,20.3, 21.1 Text2) 20% Solution to linear System- Gauss Elimination, Gauss Seidal 3 Iteration Method. 3 Numerical solution of firstorder ODE-Euler method, 3 Runge-Kutta Method (fourth order). 3	V			
formula. Interpolation of Equal intervals-Newton's forward difference formula, Newton's Backward difference formula.3Numerical Techniques. (Relevant topics in section 19.5,20.1,20.3, 21.1 Text2) Solution to linear System- Gauss Elimination, Gauss Seidal Iteration Method. Numeric Integration-Trapezoidal Rule, Simpson's 1/3 Rule.3VIIteration Method. Numerical solution of firstorder ODE-Euler method, Runge-Kutta Method (fourth order).3	•	Interpolation of Unequal intervals-Lagrange's Interpolation	2	
Interpolation of Equal intervals-Newton's forward difference 3 formula, Newton's Backward difference formula. 3 Numerical Techniques. (Relevant topics in section 20% 19.5,20.1,20.3, 21.1 Text2) 20% Solution to linear System- Gauss Elimination, Gauss Seidal 3 VI Iteration Method. 3 Numerical solution of firstorder ODE-Euler method, 3 Runge-Kutta Method (fourth order). 3		formula.		
formula, Newton's Backward difference formula. 20% Numerical Techniques. (Relevant topics in section 19.5,20.1,20.3, 21.1 Text2) Solution to linear System- Gauss Elimination, Gauss Seidal 3 VI Iteration Method. Numeric Integration-Trapezoidal Rule, Simpson's 1/3 Rule. 3 Numerical solution of firstorder ODE-Euler method, Runge-Kutta Method (fourth order). 3		Interpolation of Equal intervals-Newton's forward difference	3	
Numerical Techniques. (Relevant topics in section 19.5,20.1,20.3, 21.1 Text2) Solution to linear System- Gauss Elimination, Gauss Seidal 20% VI Iteration Method. Numeric Integration-Trapezoidal Rule, Simpson's 1/3 Rule. 3 Numerical solution of firstorder ODE-Euler method, Runge-Kutta Method (fourth order). 3		formula, Newton's Backward difference formula.		
VI Iteration Method. 20% VI Iteration Method. 3 Numerical solution of firstorder ODE-Euler method, 3 Runge-Kutta Method (fourth order). 3		Numerical Techniques (Relevant topics in section		20%
VI Solution to linear System- Gauss Elimination, Gauss Seidal 3 VI Iteration Method. 3 Numeric Integration-Trapezoidal Rule, Simpson's 1/3 Rule. 3 Numerical solution of firstorder ODE-Euler method, 3 Runge-Kutta Method (fourth order). 5		19.5.20.1.20.3, 21.1 Text2)		2070
VI Iteration Method. Iteration Method. Numeric Integration-Trapezoidal Rule, Simpson's 1/3 Rule. 3 Numerical solution of firstorder ODE-Euler method, 3 Runge-Kutta Method (fourth order). 3		Solution to linear System- Gauss Elimination. Gauss Seidal	3	
Numeric Integration-Trapezoidal Rule, Simpson's 1/3 Rule. 3 Numerical solution of firstorder ODE-Euler method, 3 Runge-Kutta Method (fourth order). 3	VI	Iteration Method.	_	
Numerical solution of firstorder ODE-Euler method, 3 Runge-Kutta Method (fourth order). Image: Second Seco		Numeric Integration-Trapezoidal Rule, Simpson's 1/3 Rule	3	
Runge-Kutta Method (fourth order). END SEMESTER EXAM		Numerical solution of firstorder ODE-Euler method.	3	
FND SFMFSTFR FXAM		Runge-Kutta Method (fourth order).		
		END SEMESTER EXAM	1	1

QUESTION PAPER PATTERN:

Maximum Marks : 100

Exam Duration: 3 hours

The question paper will consist of 3 parts.

Part A will have 3 questions of 15 marks each uniformly covering modules I and II. Each question may have two sub questions.

Part B will have 3 questions of 15 marks each uniformly covering modules III and IV. Each question may have two sub questions.

Part C will have 3 questions of 20 marks each uniformly covering modules V and VI. Each question may have three sub questions.

Any two questions from each part have to be answered.

Cour: Numb	se Course Name	L-T-P- Credits	Year of I	ntroduction	
ME20	00 Fluid mechanics and Machinery	3-1-0-4	2	016	
Prerequi	site : Nil				
Course (Objectives:				
• To • To • To	o introduce students, the fundamental concepts r o understand the basic principles of fluid machi o apply acquired knowledge on real life problem o analyze existing fluid systems and design new	related to the mech nes and devices. ns. fluid systems.	hanics of	fluids.	
Syllabus	LINIVED	VITV			
Fund hydraulic pumping	amental Concepts, fluid statics and dynamics, fl turbines, positive displacement pumps, rotary n devices.	uid kinematics, be notion of liquids,	oundary la centrifuga	ayer theory, al pump,	
Expected	Outcome				
Up on co i. A ii. D iii. U Text Boo	 mpletion of course the students might be in a ponalyze flow problems associated with statics, kitesign and analyze fluid devices such as water tunderstand and rectify problems faced in practica k: Modi P. N. and S. M. Seth, <i>Hydraulics & Experimental States and Fluid Mechanics and Fluid Sons</i>, New Delhi, 1998. 	osition to: nematics and dyn rbines and pumps al cases of enginee Fluid Mechanics, Power Engineerin	amics of f a. ering appl S.B.H Pu ng, S. K. 1	luids. ications. blishers, Kataria &	
Reference 1. J. F. D 2. Cengel 3. Robert 4. K. Sub 5. Shame 6. Jagadis 7. R K Ba	es: ouglas, "Fluid Mechanics", Pearson education. Y. A. and J. M. Cimbala, Fluid Mechanics, Tat W. Fox and Mc Donald, "Introduction to fluid or rahmanya, "Theory and applications of fluid me s. I. H, "Mechanics of fluids". Sh Lal, "Fluid mechanics and Hydraulic machine unsal, "Hydraulic Machines"	a McGraw Hill, 2 dynamics", John V echanics", (TMH) es".	2013 Wiley and	l sons	
Course Plan					
Module	Contents	all and a second	Hours	Sem. exam marks	
Ι	Fundamental concepts: Properties of fluid - weight, viscosity, surface tension, capillarity, bulk modulus, compressibility, velocity, rate Newton's law of viscosity, Newtonian and fluids, real and ideal fluids, incompressible a fluids.	density, specific vapour pressure, of shear strain, non-Newtonian and compressible	6	15%	

П	Fluid statics: Atmospheric pressure, gauge pressure and absolute pressure. Pascal's Law, measurement of pressure - piezo meter, manometers, pressure gauges, energies in flowing fluid, head - pressure, dynamic, static and total head, forces on planar and curved surfaces immersed in fluids, centre of pressure, buoyancy, equilibrium of floating bodies, metacentre and metacentric height.	10	15%		
III	Fluid kinematics and dynamics: Classification of flow -1D, 2D and 3D flow, steady, unsteady, uniform, non-uniform, rotational, irrotational, laminar and turbulent flow, path line, streak line and stream line. Continuity equation, Euler's equation, Bernoulli's equation. Reynolds experiment, Reynold's number. Hagen- Poiseuille equation, head loss due to friction, friction, Darcy- Weisbach equation, Chezy's formula, compounding pipes, branching of pipes, siphon effect, water hammer transmission of power through pipes (simple problems)	AL 8	15%		
IV	Boundary layer theory: Basic concepts, laminar and turbulent boundary layer, displacement, momentum, energy thickness, drag and lift, separation of boundary layer. Flow rate measurements- venturi and orifice meters, notches and weirs (description only for notches, weirs and meters), practical applications, velocity measurements- Pitot tube and Pitot –static tube.	10	15%		
Second Internal Exam					
V	Hydraulic turbines : Impact of jets on vanes - flat, curved, stationary and moving vanes - radial flow over vanes. Impulse and Reaction Turbines – Pelton Wheel constructional features - speed ratio, jet ratio & work done , losses and efficiencies, inward and outward flow reaction turbines- Francis turbine constructional features, work done and efficiencies – axial flow turbine (Kaplan) constructional features, work done and efficiencies.	10	20%		
VI	 Positive displacement pumps: reciprocating pump, indicator diagram, air vessels and their purposes, slip, negative slip and work required and efficiency, effect of acceleration and friction on indicator diagram (no derivations), multi cylinder pumps. Rotary motion of liquids: – free, forced and spiral vortex flows, (no derivations), centrifugal pump, working principle, impeller, casings, manometric head, work, efficiency and losses, priming, specific speed, multistage pumps, selection of pumps, pump characteristics. 	10	20%		
End Semester Exam					

Question Paper Pattern

Max. marks: 100, Time: 3 hrs

The question paper should consist of three parts

Part A

4 questions uniformly covering modules I and II. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part B

4 questions uniformly covering modules III and IV. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part C

6 questions uniformly covering modules V and VI. Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

Note: In all parts, each question can have a maximum of four sub questions, if needed.

Course No.	Course Name	L-T-P-Credits	Year of Introduction
ME201	MECHANICS OF SOLIDS	3-1-0-4	2016

Prerequisite: nil

Course Objectives:

- 1. To acquaint with the basic concepts of stress and deformation in solids.
- 2. To practice the methodologies to analyse stresses and strains in simple structural members, and to apply the results in simple design problems.

Syllabus

Analysis of deformable bodies : stress, strain, material behaviour, deformation in axially loaded bars, biaxial and triaxial deformation. Torsion of elastic circular members, design of shafts. Axial force, shear force and bending moment in beams. Stresses in beams: flexure and shear stress formulae, design of beams. Deflection of beams. Transformation equations for plane state of stress and strain, principal planes and stresses, Mohr's circle. Compound stresses: combined axial, flexural and shear loads – eccentric loading. Buckling: Euler's theory and Rankine's formula for columns.

Expected outcomes: At the end of the course students will be able to

- 1. Understand basic concepts of stress and strain in solids.
- 2. Determine the stresses in simple structural members such as shafts, beams, columns etc. and apply these results in simple design problems.
- 3. Determine principal planes and stresses, and apply the results to combined loading case.

Text Books:

- 1. Rattan, Strength of Materials, 2e McGraw Hill Education India, 2011
- 2. S.Jose, Sudhi Mary Kurian, Mechanics of Solids, Pentagon, 2015

References Books:

- 1.S. H. Crandal, N. C. Dhal, T. J. Lardner, An introduction to the Mechanics of Solids, McGraw Hill, 1999
- 2. R. C. Hibbeler, Mechanics of Materials, Pearson Education, 2008
- 3. I.H. Shames, J. H. Pitarresi, Introduction to Solid Mechanics, Prentice Hall of India, 2006
- 4. James M.Gere, Stephen Timoshenko, Mechanics of Materials, CBS Publishers & Distributors, New Delhi,2012

2014

- 5. F. Beer, E. R. Johnston, J. T. DeWolf, Mechanics of Materials, Tata McGraw Hill, 2011
- 6. A. Pytel, F. L. Singer, Strength of Materials, Harper & Row Publishers, New York, 1998
- 7. E. P. Popov, T. A. Balan, Engineering Mechanics of Solids, Pearson Education, 2012
- 8. R. K. Bansal, Mechanics of solids, Laxmi Publications, 2004
- 9. P. N. Singh, P. K. Jha, Elementary Mechanics of Solids, Wiley Eastern Limited, 2012
| Course Plan | | | |
|-------------|--|-------|-----------------------|
| Module | Contents | Hours | Sem.
Exam
Marks |
| | Introduction to analysis of deformable bodies – internal forces – method
of sections – assumptions and limitations. Stress – stresses due to
normal, shear and bearing loads – strength design of simple members.
Definition of linear and shear strains. | 3 | |
| Ι | Material behavior – uniaxial tension test – stress-strain diagrams
concepts of orthotropy, anisotropy and inelastic behavior – Hooke's law
for linearly elastic isotropic material under axial and shear deformation | 3 | 15% |
| | Deformation in axially loaded bars – thermal effects – statically indeterminate problems – principle of superposition - elastic strain energy for uniaxial stress. | 4 | |
| | Definition of stress and strain at a point (introduction to stress and strain tensors and its components only) – Poisson's ratio – biaxial and triaxial deformations – Bulk modulus - Relations between elastic | 4 | 1.50/ |
| 11 | Torsion: Shafts - torsion theory of elastic circular bars – assumptions and limitations – polar modulus - torsional rigidity – economic cross-sections – statically indeterminate problems – shaft design for torsional load. | 4 | 15% |
| | FIRST INTE <mark>R</mark> NAL EXAM | | |
| | Beams- classification - diagrammatic conventions for supports and loading - axial force, shear force and bending moment in a beam | 2 | 15% |
| ш | Shear force and bending moment diagrams by direct approach | 3 | |
| m | Differential equations between load, shear force and bending moment.
Shear force and bending moment diagrams by summation approach –
elastic curve – point of inflection. | 5 | |
| IV | Stresses in beams: Pure bending – flexure formula for beams
assumptions and limitations – section modulus - flexural rigidity -
economic sections – beam of uniform strength. | 4 | 15% |
| | Shearing stress formula for beams – assumptions and limitations – design for flexure and shear. | 4 | |
| | SECOND INTERNAL EXAM | | |
| V | Deflection of beams: Moment-curvature relation – assumptions and
limitations - double integration method – Macaulay's method -
superposition techniques – moment area method and conjugate beam
ideas for simple cases. | 6 | 20% |
| | Transformation of stress and strains: Plane state of stress - equations of transformation - principal planes and stresses. | 4 | l |
| | Mohr's circles of stress – plane state of strain – analogy between stress
and strain transformation – strain rosettes | 3 | |
| VI | Compound stresses: Combined axial, flexural and shear loads – eccentric loading under tension/compression - combined bending and twisting loads. | 4 | 20% |

Theory of columns: Buckling theory –Euler's formula for long columns – assumptions and limitations – effect of end conditions - slenderness ratio – Rankin's formula for intermediate columns.

END SEMESTER EXAM

Question Paper Pattern

Total marks: 100, Time: 3 hrs The question paper should consist of three parts **Part A**

4 questions uniformly covering modules I and II. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part B

4 questions uniformly covering modules III and IV. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks =30 marks)

Part C

6 questions uniformly covering modules V and VI. Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

Note: In all parts, each question can have a maximum of four sub questions, if needed.

Course No	Course Nome	L-T-P-	Year of
Course No.	Course Name	Credits	Introduction
ME230	FLUID MECHANICS AND MACHINES LABORATORY	0-0-3-1	2016
Prerequisite: ME2	03 Mechanics of fluids		
Course Objectives	The main objectives of this course is to den	onstrate the ap	plications of theories
of basic fluid me	chanics and hydraulic machines and to provi	de a more in	tuitive and physical
understanding of the	theory.	TIC.	4
Syllabus		1.7	L.Au+
Study:		Y	
1. Study of flow m	easuring equipments - water meters, venturi n	neter, orifice m	eter, current meter,
rotameter			
2. Study of gauges	- pressure gauge, vacuum gauge, manometers	•	
3. Study of valves	- stop valve, gate valve and foot valve.		
4. Study of pumps	– Centrifugal, Reciprocating, Rotary, Jet.		
5. Study of Turbing	es - Impulse and reaction types.		
6. Study of Hydrau	lic ram, accumulator etc.		
List of Experiment	S:	NT . 1	
1. Determination of	of coefficient of discharge and calibration of	Notches	
2. Determination (of coefficient of discharge and calibration of C	Drifice meter	
3. Determination (of coefficient of discharge and calibration of	enturimeter.	
4. Determination of	of Chezy's constant and Darcy's coefficient of	i pipe friction a	apparatus
5. Determination (of motocontria bright and redius of symptical of	floating bodie	
6. Determination (budroulie rom	noating bothe	S.
7. Experiments on 8. Downolds owner	imont		
0 Bernoulli's exper	eriment		
10 Experiment on 7	Forque converter		
11 Performance tes	st on positive displacement numps		
12 Performance tes	st on centrifugal numps determination of oper	ating point and	efficiency
13 Performance tes	st on gear numn	ating point and	remeiency
14 Performance tes	st on Impulse turbines		
15 Performance tes	st on reaction turbines (Francis and Kaplan Tu	rbines)	
16. Speed variation	test on Impulse turbine	romes)	
17. Determination	of best guide vane opening for Reaction turbin	ne	
18. Impact of jet	g		
Note: 12 experim	nents are mandatory		
Expected outco	ome: At the end of the course the students wi	ll be able to	
1. Discuss phys	ical basis of Bernoulli's equation, and apply	it in flow mea	surement (orifice,
Nozzle and V	/enturi meter), and to a variety of problems		
2. Determine th turbines.	e efficiency and plot the characteristic curve	s of different t	types of pumps and

Course code	Course Name	L-T-P- Credits	Year of Introduction		
ME302	Heat and Mass Transfer	3-1-0-4	2016		
Prerequis	ites : ME203 Mechanics of fluid				
Course O	bjectives:				
•	 To introduce the various modes of heat transfer and to develop methodologies for solving a wide variety of practical heat transfer problems To provide useful information concerning the performance and design of simple heat transfer systems To introduce mass transfer 				
Syllabı	IS: LOTINOLOUIC	1			
Modes of Heat Transfer: Conduction: Most general heat conduction equation, One dimensional steady state conduction with and without heat generation, Critical radius of insulation, Elementary ideas of hydrodynamics and thermal boundary layers, Convection heat transfer: Newton's law of cooling, Dimensionless numbers, Dimensional analysis, Problems. Fins: Types of fins : Fin efficiency and effectiveness. Boiling and condensation heat transfer, Introduction to heat pipe. Transient heat conduction. Heat exchangers, LMTD and NTU methods. Radiation: laws of radiation, Electrical analogy, Radiation shields. Mass Transfer : Mass transfer by molecular diffusion.					
Expected	outcome:				
The stude 1. Ap 2. Ap 3. De	nts will be able to oply principles of heat and mass transfer to engineering pr nalyse and obtain solutions to problems involving various n esign heat transfer systems such as heat exchangers, fins, ra	oblems nodes of hea diation shie	t transfer lds etc		
Text Boo	ks:				
1. Sac Lin 2. R.k 3. Naş 4. Kot Nev	hdeva R C, Fundamentals of Engineering Heat and Mass T nited, 2009 K.Rajput. Heat and mass transfer, S.Chand& Co.,2015 g P K., Heat and Mass Transfer, McGraw Hill,2011 handaraman, C.P., Fundamentals of Heat and Mass Transfe w Delhi, 2006	ransfer, Nev er, New Age	w Age Science e International,		
Data Bo	ok:	1			
• H Ir	leat and Mass Transfer data book: C.P. Kothandaraman, S	. Subramar	iya, New age		
References Books: 1. Yunus A Cengel, Heat Transfer: A Practical Approach, McGraw Hill,2015 2. Holman J P, Heat Transfer, McGraw Hill, 2011					
3. Fra son	nk P. Incropera and David P. Dewitt, Heat and Mass Tra	ansfer, John	Wiley and		

Course Plan			
Module	Contents	Hours	End Sem. Exam Marks
Ι	Modes of Heat Transfer: Conduction: Fourier law of heat conduction-Thermal conductivity of solids, liquids and gases- Factors affecting thermal conductivity- Most general heat conduction equation in Cartesian, cylindrical and spherical coordinates One dimensional steady state conduction with and without heat generation conduction through plane walls, cylinders and spheres-variable thermal conductivity conduction shape factor- heat transfer through corners and edges. Critical radius of insulation.	12	15%
п	Elementary ideas of hydrodynamics and thermal boundary layers-Thickness of Boundary layer-Displacement, Momentum and Energy thickness (description only). Convection heat transfer: Newton's law of cooling- Laminar and Turbulent flow, Reynolds Number, Critical Reynolds Number, Prandtl Number, Nusselt Number, Grashoff Number and Rayleigh's Number. Dimensional analysis Buckingham's Pi theorem- Application of dimensional analysis to free and forced convection- empirical relations- problems using empirical relations	10	15%
	FIRST INTERNAL EXAMINATIONEXAM		
III	Transient heat conduction-lumped heat capacity method. Fins: Types of fins - Heat transfer from fins of uniform cross sectional area- Fin efficiency and effectiveness. Boiling and condensation heat transfer(elementary ideas only),Introduction to heat pipe.	8	15%
IV	Combined conduction and convection heat transfer-Overall heat transfer coefficient - Heat exchangers: Types of heat exchangers, AMTD, Fouling factor, Analysis of Heat exchangers- LMTD method, Correction factor, Effectiveness- NTU method, Special type of heat exchangers (condenser and evaporator, simple problems only)	8	15%
	SECOND INTERNAL EXAMINATION		
V	Radiation- Nature of thermal radiation-definitions and concepts- monochromatic and total emissive power-Intensity of radiation- solid angle- absorptivity, reflectivity and transmissivity-Concept of black body- Planck' law- Kirchoff's law- Wein's displacement law-Stefan Boltzmann's law- black, gray and real surfaces-Configuration factor (derivation for simple geometries only)- Electrical analogy- Heat exchange between black/gray surfaces- infinite parallel plates, equal and parallel opposite plates-perpendicular rectangles having common edge- parallel discs (simple problems using charts and tables). Radiation shields(no derivation).	10	20%

VIMass Transfer :Mass transfer by molecular diffusion- Fick's law of diffusion- diffusion coefficient Steady state diffusion of gases and liquids through solid- equimolar diffusion, Isothermal evaporation of water through air- simple problems. Convective mass transfer- Evaluation of mass transfer coefficient- empirical relations- simple problems- analogy between heat and mass transfer.8	20%
---	-----

Question Paper Pattern

Use of approved data book permitted

Total marks: 100, Time: 3 hrs

The question paper should consist of three parts

Part A

There should be 2 questions each from module I and II

Each question carries 10 marks

Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part B

There should be 2 questions each from module III and IV Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part C

There should be 3 questions each from module V and VI Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

Note: Each question can have a maximum of four sub questions, if needed.

Course code	Course Name	L-T-P- Credits	Year of Introduction		
ME304	DYNAMICS OF MACHINERY	2-1-0-3	2016		
Prerequisit <mark>e:</mark> N	IE301 Mechanics of Machinery	TAX N	-		
Course Object • To reci • To free • To con	tives: impart knowledge on force analysis of machinery, b procating masses, Gyroscopes, Energy fluctuation in Machi introduce the fundamentals in vibration, vibration anal dom systems. understand the physical significance and design of vibra ditions	alancing of nes. ysis of sin tion system	F rotating and gle degree of s with desired		
Syllabus Force analysis Flywheel analy Vibrations – fr vibration.	of machinery - static and dynamic force analysis of vsis - static and dynamic balancing - balancing of rotating ree vibrations of single degree freedom systems, damping	plane moti masses, gyr , forced vil	on mechanisms. oscopic couples. oration, torsional		
Expected outc The students w 1. Develop th 2. Understan mechanist	 Expected outcome: The students will be able to 1. Develop the design and practical problem solving skills in the area of mechanisms 2. Understand the basics of vibration and apply the concepts in design problems of mechanisms. 				
Text Books: 1. Bal 2. S. S. 3. V.	llaney P.L. Theory of Machines, Khanna Publishers, 1994 S. Rattan, Theory of Machines, Tata McGraw Hill, 2009 P. Singh, Theory of Machines, Dhanpat Rai, 2013				
References : 1. E. 2. Gh 200 3. H. 4e, 4. Ho 5. J. H 6. W.	 Wilson, P. Sadler, Kinematics and Dynamics of Machinery, osh, A. K. Malik, Theory of Mechanisms and Machines, Af 03 Myskza, Machines and Mechanisms Applied Kinematic An 2012 Iowenko, Dynamics of Machinery, John Wiley, 1995 E. Shigley, J. J. Uicker, Theory of Machines and Mechanisr T.Thompson, Theory of vibration, Prentice Hall, 1997 	Pearson Ed filiated East alysis, Pears ns, McGraw	ucation, 2003 t West Press, son Education, Hill,1995		

	Course Plan				
Module	Contents	Hours	End Sem. Exam		
	API ABDUL KALA	M	Marks		
Т	Introduction to force analysis in mechanisms - static force analysis (four bar linkages only) - graphical methods	4	15%		
•	Matrix methods - method of virtual work - analysis with sliding and pin friction	3	1570		
II	Dynamic force analysis: Inertia force and inertia torque. D'Alemberts principle, analysis of mechanisms (four bar linkages only), equivalent dynamical systems	4	15%		
	Force Analysis of spur- helical - bevel and worm gearing	3			
	FIRST INTERNAL EXAM				
ш	Flywheel analysis - balancing - static and dynamic balancing - balancing of masses rotating in several planes	4	15%		
111	Balancing of reciprocating masses - balancing of multi-cylinder in line engines - V engines - balancing of machines	3			
	Gyroscope – gyroscopic couples	3			
IV	Gyroscopic action on vehicles-two wheelers, four wheelers, air planes and ships. Stability of an automobile – stability of a two wheel vehicle –Stabilization of ship.	4	15%		
	SECOND INTERNAL EXAM				
	Introduction to vibrations – free vibrations of single degree freedom systems – energy Method	2			
V	Undamped and damped free vibrations – viscous damping – critical damping - logarithmic decrement - Coulomb damping – harmonically excited vibrations	3	20%		
	Response of an undamped and damped system – beat phenomenon - transmissibility	2			
VI	Whirling of shafts – critical speed - free torsional vibrations – self excitation and stability analysis - vibration control - vibration isolation – vibration absorbers	4	20%		
	Introduction to multi-degree freedom systems - vibration measurement - accelerometer - seismometer - vibration exciters	3			
	END SEMESTER EXAM				

Question Paper Pattern

Maximum marks: 100

Time: 3 hrs

The question paper should consist of three parts

Part A

There should be 2 questions each from module I and II Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part B

There should be 2 questions each from module III and IV Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part C

There should be 3 questions each from module V and VI Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

- 61

Note: Each question can have a maximum of four sub questions, if needed.

Cours	e Course Name	L-T-P –	Yea	r of
	7 MACHINE DESIGN I			
MESU	7 MACHINE DESIGN - I	3-1-0-4	20.	10
Prerequ	isite : Nil			
Course	Objectives			
•]	Co understand the basic components and layout of linkage	ges in the	assembly	v of a
S	ystem/machine.		1.1	
Syllabu		I A.A.	D .	1
Introduc	tion to design of riveted, threaded, and welded joints – spring	gs and desig	n –Desig	gn laws
- stresse	s in components and machines.	CAL		
Expect	ed outcome.	forman atura	and offer	4
•	here students will become aware of the machine components,	forces, stres	ses affec	ung
L Toxt B	eoks:	Y		
	2 I Norton Kinematics and Dynamics of Machinery 1	st ed Tata	McGra	w Hill
1. I	Education Private Limited Delhi 2004	st cu., 1 ata	WieOra	vv 11111
2. 5	S. S. Rattan Theory of Machines, 3rd ed., Tata McGraw Hill	Education P	rivate L	imited.
I	Delhi, 2009			
Refere	nces:			
1. J	. E. Shigley, J. J. Uicker, Theory of Machines and Mech	anisms, Oxt	ford Uni	versity
I	Press, 2016			
2.	A. Ghosh, A. K. Malik, Theory of Mechanisms and Mach	nines, Affilia	ated Eas	t West
I	Press, 3e, 2006			
3. (C. E. Wilson, P. Sadler, Kinematics and Dynamics of Mach	ninery, 3rd e	dition, F	Pearson
H	Education, 2003			
4. I	Holowenko, Dynamics of Machinery, John Wiley & Sons, 19	995		
	Course Plan			
			10	End
Madula	Contonto		Houng	Sem.
Wiodule	Contents		nours	Exam
	Estd	10		Marks
	Classification of mechanisms – Basic kinematic con	ncepts and		
	definitions – Degree of freedom, Mobility – Kutzbach	h criterion,		
	Gruebler's criterion – Grashof's Law –Kinematic inversio	ons of four-		
I	bar chain, slider crank chains and double slider crank cha	lins - Limit	10	15%
	positions – Mechanical advantage – Transmission Angl	e -Coupler		
	machanisms. Straight line generators	uick letuill		
	Discharger and a second and a second section and a second section.	-f -in-1-		
	Displacement, velocity and acceleration analysis	or simple		
п	Force analysis of machinery static and dynamic force	analysis of	10	15%
11	plane motion mechanisms - graphical method - m	rinciple of	10	1370
	superposition –matrix methods - method of virtual work			
	FIRST INTERNAL EXAMINATION		1	
	Governors: - terminology and classification · Watt Po	orter. Proel		
ш	Hartnell, Hartung, quality of governors inertia governors	S- governor	8	15%
	speed control	05.01101		10/0
	Gyroscope: - Principle-Angular acceleration-Effect of	gyroscopic		

	couple airplanes, and ships, stability of automobile and two wheel vehicles, Rigid disc at an angle fixed to a rotating shaft		
IV	Turning moment diagram and Flywheel: - coefficient of fluctuation of energy and speed- energy saved in a flywheel- force analysis, piston effort-crankpin effort- crank effort-turning moment diagrams for I.C. engines.	8	15%
	SECOND INTERNAL EXAMINATION		
V	Cams and Followers: - types-follower motion-SHM-uniform velocity and acceleration- Cycloidal - displacement, velocity and acceleration curves-Cam profile-Reciprocating and oscillating followers-Tangent cams-Convex and concave cams with footed followers. Introduction to Polynomial cams. (Numerical problems)	10	20%
VI	Law of toothed gearing – Involutes and cycloidal tooth profiles –Spur Gear terminology and definitions –Gear tooth action – contact ratio – Interference and undercutting Gear trains – Speed ratio, train value – Parallel axis gear trains– Epicyclic Gear Trains (Numerical problems)	10	20%
END SEMESTER EXAM			

QUESTION PAPER PATTERN

Maximum Marks :100

Exam Duration: 3 Hours

PART A

4 Questions uniformly covering modules 1 and 2. Each question carries 10 marks. Students will have to answer any three questions out of four. (3X10=30 marks)

PART B

4 Questions uniformly covering modules 3 and 4. Each question carries 10 marks. Students will have to answer any three questions out of four. (3X10=30 marks)

Estd.

PART C

6 Questions uniformly covering modules 5 and 6. Each question carries 10 marks. Students will have to answer any four questions out of six. (4X10=40 marks)

Note: Each question can have maximum of 4 sub questions (a, b, c, d)

Course code	Course Name	L-T-P- Credits	Year of Introduction	
ME309	METALLURGY AND MATERIALS SCIENCE	3-0-0-3	2016	
Prerequisite	: Nil			
Course Obje	ectives:			
 Course Objectives: To provide physical concepts of atomic radius, atomic structure, chemical bonds, crystalline and non-crystalline materials and defects of crystal structures, grain size, strengthening mechanisms, heat treatment of metals with mechanical properties and changes in structure To makee aware of the behavior of materials in engineering applications and select the materials for various engineering applications. To understand the causes behind metal failure and deformation To determine properties of unknown materials and develop an awareness to apply this knowledge in material design 				
Syllabus				
Syllabus Chemical bonds – crystallography- imperfections- crystallization- diffusion- phase diagrams-heat treatment – strengthening mechanisms- hot and cold working – alloying- ferrous and non ferrous alloys- fatigue-creep- basics, need, properties and applications of modern engineering materials. Expected outcome: The students will be able to i. Identify the crystal structures of metallic materials. ii. Analyze the binary phase diagrams of alloys Fe-Fe3C, etc. iii. Correlate the microstructure with properties, processing and performance of metals. iv. Recognize the failure of metals with structural change. v. Select materials for design and construction. vi. Apply core concepts in materials science to solve engineering problems.				
Text Books		-		
1. Jose S 2. Ragha	S and Mathew E V, Metallurgy and Materials Science, P avan V, Material Science and Engineering, Prentice Hal	entagon, 2011 1,2004		
References	Estd,	1		
 Ande Avne Avne Callis Callis Clark Diete Higgi Higgi Myer Unive Reed Van V http:// http:// http:// 	rson J.C. <i>et.al.</i> , Material Science for Engineers, Chapman r H Sidney, Introduction to Physical Metallurgy, Tata M eter William. D., Material Science and Engineering, John and Varney, Physical metallurgy for Engineers, Van No r George E, Mechanical Metallurgy, Tata McGraw Hill, ns R.A Engineering Metallurgy part - I – ELBS,1998 s Marc and Krishna Kumar Chawla, Mechanical behavio ersity press,2008 Hill E. Robert, Physical metallurgy principles, 4th Edn. Vlack -Elements of Material Science - Addison Wesley, //nptel.ac.in/courses/113106032/1 //www.myopencourses.com/subject/principles-of-physica /ocw.mit.edu/courses/materials-science-and-engineering d_ State-chemistry-fall-2010/syllabus/ //www.msm.cam.ac.uk/teaching/partIA.php	n and Hall,199 cGraw Hill, 20 Wiley, 2014 ostrand,1964 1976 our of material Cengage Lear 1989 al-metallurgy-2 /3-091sc-intro	0)09 s, Cambridge ning, 2009 2 <u>duction-</u>	

COURSE PLAN				
Module	Contents	Hours	End Sem. Exam Marks	
Ι	Earlier and present development of atomic structure; attributes of ionization energy and conductivity, electronegativity and alloying; correlation of atomic radius to strength; electron configurations; electronic repulsion Primary bonds: - characteristics of covalent, ionic and metallic bond: attributes of bond energy, cohesive force, density, directional and non-directional and ductility, properties based on atomic bonding:- attributes of deeper, energy well and shallow energy well to melting, temperature, coefficient of thermal expansion - attributes of modulus of elasticity in metal cutting process – Secondary bonds:- classification- hydrogen bond and anomalous behavior of ice float on water, application- atomic mass unit and specific heat, application. (<i>brief review only, no Universityquestions and internal assessment from these portions.</i>)	2	15%	
	Crystallography:- Crystal, space lattice, unit cell- BCC, FCC, HCP structures - short and long range order – effects of crystalline and amorphous structure on mechanical properties. Coordination number and radius ratio; theoretical density; simple	1		
	problems - Polymorphism and allotropy. Miller Indices: - crystal plane and direction (brief review) - Attributes of miller indices for slip system, brittleness of BCC, HCP and ductility of FCC - Modes of plastic deformation: - Slip and twinning.	1		
	Schmid's law, equation, critical resolved shear stress, correlation of slip system with plastic deformation in metals and applications.	1		
	Mechanism of crystallization: Homogeneous and heterogeneous nuclei formation, under cooling, dendritic growth, grain boundary irregularity.	1		
	Effects of grain size, grain size distribution, grain shape, grain orientation on dislocation/strength and creep resistance - Hall - Petch theory, simple problems	1		
	Classification of crystal imperfections: - types of dislocation – effect of point defects on mechanical properties - forest of dislocation, role of surface defects on crack initiation.	1		
Π	Burgers vector –dislocation source, significance of Frank Read source in metals deformation - Correlation of dislocation density with strength and nano concept, applications.	1	15%	
	Significance high and low angle grain boundaries on dislocation – driving force for grain growth and applications during heat treatment.	1		
	Polishing and etching to determine the microstructure and grain size.	1		
	Fundamentals and crystal structure determination by X – ray diffraction, simple problems –SEM and TEM.	1		
	Diffusion in solids, Fick's laws, mechanisms, applications of diffusion in mechanical engineering, simple problems.	1		
FIRST INTERNAL EXAMINATION				

	Phase diagrams: - Limitations of pure metals and need of alloying -	2	
	classification of alloys, solid solutions, Hume Rothery's rule -	2	
	Coring - lever rule and Gibb`s phase rule - Reactions: monotectic, eutectic, eutectoid, peritectic, peritectoid.	1	
	Detailed discussion on Iron-Carbon equilibrium diagram with microstructure and properties changes in austenite, ledeburite, ferrite, cementite, special features of martensite, transformation, bainite, spheroidite etc.	1	
ш	Heat treatment: - Definition and necessity – TTT for eutectoid iron– carbon alloy, CCT diagram, applications - annealing, normalizing, hardening, spheroidizing.	1	15%
	Tempering:- austermpering, martempering and ausforming- Comparative study on ductility and strength with structure of pearlite, bainite, spherodite, martensite, tempered martensite and ausforming.	1	
	Hardenability, Jominy end quench test, applications- Surface hardening methods:- no change in surface composition methods :- Flame, induction, laser and electron beam hardening processes- change in surface composition methods :carburizing and Nitriding; applications.	2	
	Types of Strengthening mechanisms: - work hardening, equation - precipitation strengthening and over ageing- Dispersion hardening.	1	- 15%
	Cold working: Detailed discussion on strain hardening; recovery; re- crystallization, effect of stored energy; re-crystallization temperature - hot working, Bauschinger effect and attributes in metal forming.	1	
	Alloy steels:- Effects of alloying elements on steel: dislocation movement, polymorphic transformation temperature, alpha and beta stabilizers, formation and stability of carbides, grain growth, displacement of the eutectoid point, retardation of the transformation rates, improvement in corrosion resistance, mechanical properties	1	
1	Nickel steels, Chromium steels etc Enhancement of steel properties by adding alloying elements: Molybdenum, Nickel, Chromium, Vanadium, Tungsten, Cobalt, Silicon,Copper and Lead.	1	
	High speed steels:- Mo and W types, effect of different alloying elements in HSS	1	
	Cast irons: Classifications; grey, white, malleable and spheroidal graphite cast iron etc, composition, Microstructure, properties and applications.	1	
	Principal Non ferrous Alloys: - Aluminum, Copper, Magnesium, Nickel, study of composition, properties, applications, reference shall be made to the phase diagrams whenever necessary.	1	
SECOND INTERNAL EXAMINATION			
	Fatigue: - Stress cycles – Primary and secondary stress raisers - Characteristics of fatigue failure, fatigue tests, S-N curve.	1	
V	Factors affecting fatigue strength: stress concentration, size effect, surface roughness, change in surface properties, surface residual stress.	1	20%

	Ways to improve fatigue life – effect of temperature on fatigue, thermal fatigue and its applications in metal cutting	1			
	Fracture: – Brittle and ductile fracture – Griffith theory of brittle fracture – Stress concentration, stress raiser – Effect of plastic deformation on crack propagation.				
	Transgranular, intergranular fracture - Effect of impact loading on ductile material and its application in forging, applications - Mechanism of fatigue failure.	1			
	Structural features of fatigue: - crack initiation, growth, propagation - Fracture toughness (definition only) – Ductile to brittle transition temperature (DBTT) in steels and structural changes during DBTT, applications.	1			
	Creep: - Creep curves – creep tests - Structural change: deformation by slip, sub-grain formation, grain boundary sliding	1			
	Mechanism of creep deformation - threshold for creep, prevention against creep - Super plasticity: need and applications	1			
VI	Composites:- Need of development of composites - geometrical and spatial Characteristics of particles – classification - fiber phase: - characteristics, classifications -composites:- Need of development of composites -	2	20%		
	Modern engineering materials: - only fundamentals, need, properties and applications of, intermetallics, maraging steel, super alloys, Titanium – introduction to nuclear materials, smart materials and bio materials.	2			
	Ceramics:-coordination number and radius ratios- AX, AmXp, AmBmXp type structures – applications.	1			

END SEMESTER EXAMINATION

QUESTION PAPER PATTERN

Maximum Marks: 100

Exam Duration: 3 Hrs

PART A

4 Questions uniformly covering modules 1 and 2. Each question carries 10 marks. Students will have to answer any three questions out of four. (3X10=30 marks)

2014

PART B

4 Questions uniformly covering modules 3 and 4. Each question carries 10 marks. Students will have to answer any three questions out of four. (3X10=30 marks)

PART C

6 Questions uniformly covering modules 5 and 6. Each question carries 10 marks. Students will have to answer any four questions out of six. (4X10=40 marks)

Note: In all parts, each question can have a maximum of 4 sub questions, if needed.

Cours	e Course Name	L-T-P –	Yea	ar of
	1 MANUEACTUDINC DDOCESSES		Intro	luction
Dronogu	I MANUFACTURING PROCESSES	3-0-0-3	20)10
Course	Objectives			
Course	Objectives	used to create	different	forms
	f metals/allovs/composites	ised to create		1011115
Syllabu				
Introduc	tion to material casting processes - welding process an	d the physics	s of we	lding -
mathema	atical/ physical description of forming processes – rolling an	d types – forg	ing pro	cesses –
advance	d manufacturing – non-traditional machining – design for ma	nufacturing		
Expect	ed outcome.	GAL		
•]	The students will become aware of the types of processes user	d for the manu	facturin	g the
T (D	arts of automobile.	1	_	
Text B	00KS: Jolmi A Vouccof, Hasson A El Hofy and Mahmoud H Ahma	d Manufactur	ing	
1. f	echnology (materials, processes and equipments) CRC Pre	0, Manufactur	mg	
2. F	Kalapakijan and Schmid, Manufacturing Engineering and Te	chnology. Pea	rson. 7e	. 2013
Refere	nces:	•••••••		, _010
1. H	line and Rosenthal, Principles of Metal Casting, Tata McG	aw Hill India,	1995	
2. H	R.Beeley, Foundry Technology, Butterworths Publication,	1972		
	Course Plan			
				End
Module	Contents		Hours	Sem. Exam
				Marks
	Casting of metallic materials – introduction – expendence	lable mold		
	casting processes - sand casting, shell, vacuum, slun	rry, plaster		
	and ceramic molding, expandable pattern casting -	permanent		
Ι	mold castings – die and centrifugal casting – meltin	g furnaces	7	15%
	- cupolas and crucible furnace -cleaning and fin	nishing of		
	castings - quality of castings - defects & method of	inspection		
	of defects			
	Bulk forming of metallic materials – Classification	– Forging		
	processes – open die, close die, special forging p	rocesses –		
	forging equipment and defects	1		
II	Rolling processes - flat, section, tube, and spec	ial rolling	7	15%
	processes and rolling defects – Extrusion – class	ification –		
	equipment & defects			
	Drawing – rod, wire and tube – classification and dra	wing die		
FIRST INTERNAL EXAMINATION				
	Sheet metal forming processes - Classification -	- Shearing		
	processes and mechanism – Bending processes – pa	rameters –		
III	springback and residual stresses - bending equipmer	nt – stretch	8	15%
	forming – Deep drawing – blank holding pressure	e, ironing,		
	deep drawing force, redrawing – hydroforming –	spinning –		

	conventional, flow tunneling and tube spinning.		
IV	Joining processes – Fusion welding – gas, thermit, electric arc, resistance and high energy beam welding – Solid state welding – cold, diffusion, explosion, forge, friction, hot pressure, roll, and ultrasonic welding – Solid-liquid state welding – brazing, soldering and adhesive bonding – welding of plastics – metallurgy of welded joints – welding defects – quality control – destructive and non-destructive tests – mechanical joining.	8	15%
	SECOND INTERNAL EXAMINATION		
V	Non-traditional machining – Jet machining – abrasive, water jet, and abrasive water jet – ultrasonic machining – USM equipment and process capabilities – Chemical milling & photochemical machining – ECM – elements, equipment and process capabilities – electrochemical grinding – EDM – sinking, milling and wire cutting – EBM – LBM – plasma arc cutting	8	20%
VI	Advanced manufacturing techniques – near net shape manufacturing – metal injection molding and rapid prototyping – microfabrication technology – microcutting, microfinishing, and nonconventional micromachining – application of nano technology – sustainable and green manufacturing. Manufacturing process capabilities – process selection factors – process information maps – ranking strategy – design for manufacturing – casting, sheet metal forming, die forging, welding, and assembly.	7	20%
END SEMESTER EXAM			

QUESTION PAPER PATTERN

Maximum Marks : 100

Exam Duration: 3 Hrs

PART A

4 Questions uniformly covering modules 1 and 2. Each question carries 10 marks. Students will have to answer any three questions out of four. (3X10=30 marks)

PART B

4 Questions uniformly covering modules 3 and 4. Each question carries 10 marks. Students will have to answer any three questions out of four. (3X10=30 marks)

PART C

6 Questions uniformly covering modules 5 and 6. Each question carries 10 marks. Students will have to answer any four questions out of six. (4X10=40 marks)

Note: In all parts, each question can have a maximum of 4 sub questions, if needed.

Cours	e Course Name	L-T-P –	Yea	r of		
code		Credits	Introd	luction		
ME31	4 MACHINE DESIGN - II	3-0-0-3	20	16		
Prerequ	isite : ME307 Machine design - II					
Course	Objectives					
•]	To introduce the design considerations needed for different types	pes of mach	ine			
0	omponents and					
Syllabu	A TNY A DUTNE IT IZA I	TAL N				
Introduc	tion to design of different types of bearings, clutches, brakes	– IC engine	e parts d	esign –		
Design 1	ecommendations	1.114	4			
Expect	ed outcome.	A				
•]	The students will become aware of the machine components, the students will become aware of the machine components.	forces, stress	ses affec	ting		
t	hem and aspects of designing them.	1				
Text B	ooks:	I				
1. (C.S,Sarma, KamleshPurohit, Design of Machine Elements Pre	entice Hall o	f India l	Ltd		
1	NewDelhi					
2. I	A. F. Spotts, T. E. Shoup, Design of Machine Elements, Pears	son Education	on, 8e, 2	003		
3.	Krishna Rao, Design of machine Elements volume 21 K In	ternational I	ublishi	ng		
	100se Pvt. Ltd New Delni, 2011	1.0	. 1. 20	10		
4.	B.Bhandari, Design of Machine Elements McGraw Hill Boo	ok Company	, 4e, 20	10		
Data bu	Lingaigh Machina Design Data hand book Suma Pu	I) Iblichara R	angalor	v/ Toto		
1. I N	AcGraw Hill	ionsners, D	angalore	z/ Tala		
Poforo			_			
	oughtie VI & Vallance A V Design of Machine Elements	McGraw H	Hill Boo	ŀ		
	Company 1964	, wicoraw I		ĸ		
2	E Shigley Mechanical Engineering Design McGraw Hill H	Book Comp	anv 5e	1986		
3	uvinall R C & Marshek K M Fundamentals of Machine Com	ponent Des	ion Ioh	n		
5. S	Viley. 5e. 2011	iponene Des				
4. 5	liegel, Maleev& Hartman, Mechanical Design of Machines, I	nternational	Book			
(Company.					
	Course Plan	1				
				Sem.		
Module	Contents		Hours	Exam		
				Marks		
	Classification of design - Different phases in design proce	ss - design				
	factors and considerations Engineering materials and the	ir physical				
	properties as applied to design - Selection of materials -	Factors of	Ĩ			
Ι	safety in design – Endurance limit of materials- theories of	of failure -	8	15%		
	Guest's theory - Rankine's theory - St. Venant's theory	- Haigh's				
	theory - Von Mises&Hencky theory - shock and impact loads - fatigue					
Ioading - endurance limit stress- Factors affecting endurance limit -						
Pactor of safety - creep and thermal stresses						
	Design of shafts on the basis of strength - Design of shaft o	n the basis				
тт	or rigidity - Design of notion shafts -design for static a	nd fatigue	7	150/		
11	Design of wolded joints. Depresentation of molder	og in £11.4	/	13%		
	Design of weided joints- Representation of weids - stress	es in fillet				
	and built weigs- design for static loads - bending and torsion	in weided				

Downloaded from Ktunotes.in

	joints- eccentrically loaded welds - design of welds for variable loads.		
	FIRST INTERNAL EXAMINATION		
III	Clutches - friction clutches- design considerations-multiple disc clutches-cone clutch- centrifugal clutch Brakes- Classification, internal expanding shoe brake, disc brake Spring- Design of leaf spring, coil spring, torsion bar		15%
IV	IV Design of bearings - Types - Selection of a bearing type - bearing life - Rolling contact bearings – static and dynamic load capacity - axial and radial loads - selection of bearings - dynamic equivalent load - lubrication and lubricants – viscosity Journal bearings - hydrodynamic theory - design considerations - heat balance - bearing characteristic number - hydrostatic bearings.		15%
	SECOND INTERNAL EXAMINATION		
V	Gears- classification- Gear nomenclature - Tooth profiles - Materials of gears - design of spur, helical, bevel gears and worm & worm wheel - Law of gearing - virtual or formative number of teeth- gear tooth failures- Beam strength - Lewis equation- Buckingham's equation for dynamic load	8	20%
VI	Design of Internal Combustion Engine parts- Piston, Cylinder, Connecting rod, Crank shaft, Flywheel & valves	7	20%
END SEMESTER EXAM			

QUESTION PAPER PATTERN

Maximum Marks : 100

Exam Duration: 3 Hrs

PART A

3 Questions uniformly covering modules 1 and 2. Each question carries 15 marks. Students will have to answer any two questions out of four. (2X15=30 marks)

PART B

3 Questions uniformly covering modules 3 and 4. Each question carries 15 marks. Students will have to answer any two questions out of four. (2X15=30 marks)

PART C

3 Questions uniformly covering modules 5 and 6. Each question carries 20 marks. Students will have to answer any two questions out of four. (2X20=40 marks)

Note: Each question can have maximum of 4 sub questions, if needed.

Downloaded from Ktunotes.in

Course code	Course Name	L-T-P- Credits	Year of Introduction
ME332	COMPUTER AIDED DESIGN AND ANALYSIS LAB	0-0-3-1	2016
Prerequisi	te: ME308 Computer aided design and analysis	IAN	A
Course O	bjectives: To provide working knowledge on Computer Aided Design me To impart training on solid modelling software To impart training on finite element analysis software	thods and pr	ocedures
Syllabus Introduc Exercise a. Creat b. Creat (mini Exercise systems a. S b. T c. F	ction to solid modeling and Finite Element Analysis software. es on modeling and assembly. ion of higher end 3D solid models.(minimum 3 models) ion of assembled views of riveted joints, cotter joints and shaft mum 3 models) es on the application of Finite Element Method/Finite Volume 2 :- tructural analysis. (minimum 3 problems) hermal analysis. (minimum 2 problems) luid flow analysis. (minimum 1 problem)	couplings. Method to e	ngineering
Expected The studer i. ii.	outcome: hts will be able to Gain working knowledge in Computer Aided Design methods a Solve simple structural, heat and fluid flow problems using sta	and procedur andard softw	es are
Points to	note:	/	
•	Any appropriate solid modeling software (like CATIA, Solids V Solid Edge and NX, free software, etc.) and package (like ANS NASTRAN, ABAQUS, ADINA, Siemens Femap Nastran,free Evaluation Class exercises 60 marks Regular class viva 10 marks Final internal exam using software 30 marks All the above three evaluations are mandatory.	Works, ProE YS, Comsol software etc	IDEAS, Siemens Multi Physics, .) may be used.
Reference 1. 2. 3. 4. 5.	s Books: Daryl Logan, A First course in Finite Element Method, Thomso David V Hutton, Fundamentals of Finite Element Analysis, Tat Ibrahim Zeid, CAD/ CAM Theory and Practice, McGraw Hill, Mikell P. Groover and Emory W. Zimmer, CAD/ CAM – Com manufacturing, Pearson Education, 1987 T. R. Chandrupatla and A. D. Belagundu, Introduction to Finite Pearson Education, 2012	on Learning, a McGraw F 2007 puter aided c e Elements in	2007 Iill,2003 lesign and Engineering,

Course	Course Name	L-T-P -	Year of		
Code ME333	HEAT ENGINES LAB	0-0-3-1	2016		
Prerequisit					
Course Obj	ectives	roparties of	fuels &		
• 10 j	cants	operates of	lueis &		
• To p	erform characteristic tests on petrol and diesel engin	nes.	A		
List of Exer	cises/Experiments :	LAN	Z1		
1. De	etermination of viscosity using Saybolt Viscometer.	CA.			
2. De	etermination of viscosity using Redwood Viscometer	er.	22		
3. De	etermination of Flash point and Fire point using Per	sky Marten's	s Apparatus.		
4. Fu	lel Injection Pump Testing and Calibration of Fuel I	njection pum	ip.		
4. Pe 5. Pe	rformance Test on Multi cylinder Four Stroke Dies	ol Engine			
6. Re	tromance rest on Winter Cymaer Four Stroke Diese	Engine.			
7. M	orse Test on Multi cylinder Four Stroke Petrol engi	ne.			
8. He	eat Balance Test on Multi cylinder Four Stroke Die	sel Engine.			
9. Ve	olumetric Efficiency Test on Multi cylinder Four St	roke Diesel E	Engi <mark>n</mark> e.		
10.V	olumetric Efficiency Test on Multi cylinder Four S	troke Petrol I	Engine.		
11. 0	Cooling curve Test on Twin cylinder Four stroke Di	esel Engine.			
12. V	/alve Timing on Four stroke Diesel/ Petrol Engine	1			
13. L 14. T	Determination of calorific value of liquid fuel using	bomb calorin	lorimotor		
14.1	retermination of calorine value of gaseous fuer using	ig Juliker Sea	nonnieter		
Note	: Minimum 12 experiments are mandatory				
Expected	outcome:				
The students	will be able to				
i. Test	different Properties of fuels and lubricants.				
11. Test	ii. Test petrol and diesel engines to evaluate their performance				
List of Equ	ipments Estd.				
• Sayb	Saybolt viscometer				
Redy	Redwood viscometer				
• Pens	Pensky Marten's flash & fire point apparatus				
Fuel pump testing and calibrating machine					
Single/multicylinder engine (petrol/diesel) for valve timing					
 Single/1 win cylinder 4 stroke diesel engine with rope drum/electrical dynamometer Multi cylinder patrol angine with addycyrrent/bydraulia dynamometer 					
• Mult	 Multi cylinder diesel engine with eddycurrent/hydraulic dynamometer 				
• Bom	 Bomb Calorimeter 				
 Junk 	• Junker's gas calorimeter				
	-				

Course	Course Name	L-T-P -	Year of	
code		Credits	Introduction	
ME335	PRODUCTION ENGINEERING LAB	0-0-3-1	2016	
Prerequisite				
Course Obje	ectives			
• To g	ve an idea about different manufacturing pro	cesses and t	to perform	
differ	ent types of tests on various works.			
	A TAT A D D I IT IZA	T DAL A		
List of Exer	cises/Experiments :	A AI		
Experiment or	arc/TIG/MIG welding: -	11111		
1. butt v	velding and	A	1	
2. lap w	elding	101		
Experiment of	on lathe:-	V		
3. Facin	g,			
4. plain	turning,			
5. step t	urning,			
6. partin	g – groove cutting,			
7. Knuri	ing and chamfering			
8. Iorin	turning and taper turning –			
9. Eccel	ure turning.	ol mokora mi	arosaona	
Fyperiment of	we thread cutting: -	of makers mi	croscope.	
11 single	and multi start external			
12 single	and multi start internal threads			
13 Squar	e and V-threads			
Experiment of	n drilling machine: -			
14. Drilli	ng.			
15. borin	<u>.</u>			
16. reami	ng			
17. count	er sinking and taping			
			1	
Expected ou	tcome:			
• The s	tudents will be able to perform welding and n	nachining op	erations in lathe	
and d	rilling machine	0 1		
List of Equi	oments			
• 3 or 4	jaw Lathe			
Arc / TIG / MIG welding machine 2014				
Drilling machine				
Threa	d cutting tools.			