

CONTROL STRATEGY OF IMMUNE SYSTEM AND DRUG

DOSAGE USING REINFORCEMENT LEARNING

 A Major project report submitted to

Jawaharlal Nehru Technological University Kakinada, in partial

Fulfillment for the Award of degree of

BACHELOR OF TECHNOLOGY

IN

COMPUTER SCIENCE AND ENGINEERING

Submitted by

 B. SUBBAIAH 20491A05T1

 B. SAI SUMANTH 20491A05T0

 L. ANAND BABU 20491A05T2

 R. RAGHU BABU 20491A05T3

Under the Noble Guidance of

MRS.THELLA SUNITHA, M.Tech.,(Ph.D),

Associate Professor

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

 QIS COLLEGE OF ENGINEERING AND TECHNOLOGY

(AUTONOMOUS)

An ISO 9001:2015 Certified institution, approved by AICTE & Reaccredited by NBA, NAAC ‘A+’ Grade

(Affiliated to Jawaharlal Nehru Technological University, Kakinada)

VENGAMUKKAPALEM, ONGOLE – 523 272, A.P

April, 2024

QIS COLLEGE OF ENGINEERING AND TECHNOLOGY

(AUTONOMOUS)
An ISO 9001:2015 Certified institution, approved by AICTE & Reaccredited by NBA, NAAC ‘A+’ Grade

(Affiliated to Jawaharlal Nehru Technological University, Kakinada)

VENGAMUKKAPALEM, ONGOLE:-523272, A.P

December 2022

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

CERTIFICATE

 This is to certify that the technical report entitled “CONTROL STRATEGY OF IMMUNE

SYSTEM AND DRUG DOSAGE USING REINFORCEMENT LEARNING” is a bonafide work of the

following final B.Tech students in the partial fulfillment of the requirement for the award of the

degree of bachelor of technology in COMPUTER SCIENCE AND ENGINEERING for the

academic year 2023-2024.

 B. SUBBAIAH 20491A05T1

 B. SAI SUMANTH 20491A05T0

 L. ANAND BABU 20491A05T2

 R. RAGHU BABU 20491A05T3

Signature of the guide Signature of Head of Department

 Mrs. T. SUNITHA, M.Tech., (Ph.D), DR. BUJJI BABU, M.Tech., Ph.D,

 Associate Professor HOD, Professor in CSE

Signature of External Examiner

ACKNOWLEDGMENT

“Task successful” makes everyone happy. But the happiness will be gold without glitter if we

didn’t state the persons who have supported us to make it a success.

We would like to place on record the deep sense of gratitude to the Hon’ble Secretary &

Correspondent Sri. N. SURYA KALYAN CHAKRAVARTHY GARU, QIS Group of

Institutions, Ongole for providing necessary facilities to carry the project work.

We express our gratitude to the Hon’ble chairman Sri. N. NAGESWARA RAO GARU, QIS

Group of Institutions, Ongole for his valuable suggestions and advices in the B. Tech course.

We express our gratitude to Dr. Y. V. HANUMANTHA RAO GARU, B.E, M.TECH, Ph.D.,

Principal of QIS College of Engineering & Technology, Ongole for his valuable suggestions

and advices in the B. Tech course.

We express our gratitude to the Head of the Department of CSE, Dr. D. BUJJI BABU GARU,

M. TECH, Ph.D., QIS College of Engineering & Technology, Ongole for his constant

supervision, guidance and co-operation throughout the project.

We would like to express our thankfulness to our project guide, Mrs. T.SUNITHA,

Assistant Professor, M.Tech.,(Ph.D)., CSE, QIS College of Engineering & Technology, Ongole

for his constant motivation and valuable help throughout the project work.

Finally, we would like to thank our Parents, Family and friends for their co-operation to complete

this project.

 Submitted by

 B. SUBBAIAH (20491A05T1)

 B. SAI SUMANTH (20491A05T0)

 L. ANAND BABU (20491A05T2)

 R. RAGHU BABU (20491A05T3)

DECLARATION

 We hereby declare that the project work entitled “Control strategy of immune system and

drug dosage using reinforcement learning” done under the guidance of. Mrs. T. SUNITHA,

M.Tech., (Ph.D)., Assistant Professor- CSE, is being submitted to the “Department of

Computer Science & Engineering”, QIS College of Engineering & Technology, Ongole is of

our own and has not been submitted to any other University or Educational Institutions of any

degree.

 TEAM MEMBERS

 B. SUBBAIAH (20491A05T1)

 B. SAI SUMANTH (20491A05T0)

 L. ANAND BABU (20491A05T2)

 R. RAGHU BABU (20491A05T3)

ABSTRACT

A reinforcement learning-based drug dosage control strategy is developed for

immune systems with input constraints and dynamic uncertainties to sustain the

number of tumor and immune cells in an acceptable level. First of all, the state of

the immune system and the desired number of tumor and immune cells are

constructed into an augmented state to derive an augmented immune system. By

designing a discounted non-quadratic performance index function, the robust

tracking control problem of immune systems with uncertainties is transformed into

an optimal tracking control problem of nominal immune systems and the drug

dosage can be limited within the specified range. Hereafter, a reinforcement learning

algorithm and a critic-only structure are adopted to acquire the approximate optimal

drug dosage control strategy. Furthermore, theoretical proof reveals that the

proposed reinforcement learning-based drug dosage control strategy ensures the

number of tumor and immune cells reaches the preset level under limited drug

dosages and model uncertainties. Finally, simulation study verifies the availability

of the developed drug dosage control strategy in different growth models of tumor

cell.

Index Terms:

Neural network, Reinforcement learning, Immune System, Immunotherapy, Robust

control, Drug dosage control

i

TABLE OF CONTENTS

CHAPTER NO TITLE PAGE NO

 I ABSTRACT i

 II TABLE OF CONTENTS ii-iii

 III LIST OF FIGURES iv

 IV LIST OF ABBREVIATION v

 1 INTRODUCTION 1-4

 2 LITERATURE SURVEY 5-7

 3 SYSTEM STUDY AND ANALYSIS 8

 3.1 Existing System 8-9

 3.2 Disadvantages 9

 3.3 Proposed System 9-10

 3.4 Advantages 10

 3.5 System Requirements 10-11

4 SYSTEM STUDY 12

4.1 Feasibility Study 12

 4.2 Economic Feasibility 12-13

 4.3 Technical Feasibility 13

 4.4 Social Feasibility 13

 5 SOFTWARE ENVIRONMENT 14

 5.1 Java Technology 14-15

 5.2 Java Platform 16-17

 5.3 What can Java Technology do 17-20

 5.4 Microsoft Open Database Connectivity 20-22

 5.5 Microsoft Systems Developed Java Database 22-26

 Connectivity

 5.6 TCP/IP Stack 26-29

 5.7 J Free Chart 29-33

 5.8 J2ME Profiles 34-35

ii

 6 SYSTEM DESIGN 36

 6.1 Architecture Diagram 36

 6.2 Class Diagram 37

 6.3 Data Flow Diagram 38

 6.4 Flow Chart 39

 6.5 Sequence Diagram 40

 6.6 Use Case Diagram 41

 7 IMPLEMENTATION 42

 7.1 Sample Code 42-50

 8 SYSTEM TESTING 51

 8.1 Unit Testing 51

 8.2 Integration Testing 51-53

 8.3 Use Acceptance 53

 8.4 Output 53

 8.5 Validation 53-54

 8.6 Test Cases 54-56

 8.7 System Testing 56-57

 9 RESULTS 58

 9.1 Sample Screens 58-62

 10 CONCLUTION 63

 11 REFERENCE 64-67

iii

LIST OF FIGURES

FIGURE NO TITLE PAGE NO

5.1.1 Java virtual machine inner process 15

5.1.2
Sample program in JVM running in windows

2000
15

5.2 Packages of Java Platform 16

5.3 Figure Java 2 SDK 19

5.5 Java program working illustration 25

5.6.1 TCP/IP stack in OSI 26

5.6.2 32-bit address operator 28

5.7 General J2ME Architecture 31

6.1 Architecture diagram 36

6.2 Class diagram 37

6.3 Data flow diagram 38

6.4 Flowchart diagram 39

6.5 Sequence diagram 40

6.6 Use case diagram 41

9.1 Home in Webpage 58

9.2 Admin menu in Webpage 58

9.3 Sidebar menu in Webpage 59

9.4 User login in Webpage 59

9.5 User registration in Webpage 60

9.6 Updated user sidebar menu in Webpage 60

9.7 Example user profile 61

9.8 Data graph 61

9.9 View all data in Webpage 62

iv

LIST OF ABBREVIATIONS

• MY SQL - My Structure Query Language

• JSP - Java Server Pages

• JVM - Java Virtual Machine

• GUI - Graphical User Interface

• JDBC - Java Database Connectivity

• TCP - Transmission Control Protocol

• ODBC - Microsoft Open Database Connectivity

• LAN - Local Area Network

• UDP - User Datagram Protocol

• J2ME - Java 2 Micro Edition

• JRE - Java Runtime Environment

• KVM - Kind of Java Virtual Machine

• CLDC - Connected Limited Device Configuration

• CDC - Connected Device Configuration

v

1

CHAPTER-1

INTRODUCTION

Cancer is a leading cause of death worldwide in recent decades, accounting for

nearly 10 million deaths in 2020. Its morbidity expects up to 29 million cases by

2040 [1]. Cancer development is a multistep process. The risk factors of

tumorigenesis are highly diverse, including genetic alterations, poor diet, physical

inactivity, chronic infections and so on [2], [3]. Normal cells grow out of control

when harmful changes interfere with orderly cellular biological process, forming

precancerous lesions. Further, precancerous lesions develop into tumors. Cancer

is characterized as malignant tumor. Traditional treatments of cancer mainly

include surgery, radiotherapy, chemotherapy. Treatment options depends on the

type and stage of cancer and the individual status of patients. Most types of cancer

are separated by tumor-node-metastasis classification system including stage I to

stage IV [4]. Stage I cancer is limited to primary location and can be removed

through surgery.

Stage II-III cancers have spread deeply into nearby tissues and even lymph nodes.

Stage IV cancer that has spread to remote organs of the body is called advanced

or metastatic cancer. Widespread metastases are the leading causes of cancer

death. Once the cancer is diagnosed at stage II-IV, it should be treated with

radiotherapy, chemotherapy or combined chemo-radiation therapy. Along with

the cancer progression, abnormal cells can be recognized and eliminated by the

immune system inside the body due to the differences in cancer cells and normal

cells. Immune cells are the main components of immune system and it can be

divided into innate immune cells and adaptive immune cells. Activated innate

immune cells could eliminate cancer cells through extensive phagocytosis and

further activate adaptive immunity [5], [6]. Adaptive immune cells like cytotoxic

CD8+ T cells directly target cancer cells through recognizing corresponding

antigens [7], [8] and it is different from radiotherapy and chemotherapy

2

eliminating both cancer cells and normal cells. In addition, immunological

memory, a significant characteristic of adaptive immunity, favors to consistent

antitumor effects [9]. Thus, immunotherapy was proposed to prevent and treat

cancer through reconstruction and enhancement of immune ability [8], [10], [11].

However, tumor cells could employ many strategies to escape immune

surveillance and elimination, such as avoiding the immune recognition and

recruiting of immunosuppressive immune cells [12]. Development and

application of combined chemo and immunotherapies have been regarded as

promising strategy tonight against cancer [13], [14]. The balance between tumor

cells and immune cells determines tumor fate. For the sake of describing the

correlation between tumor cells and immune cells in human body, many scholars

have established appropriate mathematical models for them, among which the

most classic one is Stepanova's model. This model uses two differential equations

to describe the changes of tumor cells and immune cells in immune systems.

Based on it, many researchers have proposed different treatment plans based on

control theory. The core idea is to design an appropriate control scheme for

immune systems based on control theory, namely drug dosage control strategy,

to ensure the level of tumor cells and immune cells in immune systems is

maintained at a desired level. In [15], an adaptive robust control scheme was

developed for cancer tumor-immune systems with model uncertainties. By

designing a sliding-mode observer and a pair of adaptive control laws, the level

of tumor and immune cells can be maintained on a preset value. In [16], the

tracking control problem of cancer tumor-immune systems was addressed by

proposing an adaptive control approach. However, these methods doesnot

consider the drug dosage during treatment. Since drugs have side effects on the

human body, we hope that the drug dosage should be as small as possible while

ensuring the treatment effect. Fortunately, this requirement can be achieved by

using the optimal control approach. In recent years, several researchers have

proposed tumor treatment protocols based on optimal control theory.

3

In [17], the chemotherapy administration problem was investigated by

developing state dependent recti equation based optimal control scheme. In [18],

the initial malignant state of tumor was transferred to the benign region by

adopting optimal control method. On the whole, a performance index function

that contains drug dosages, tumor cells, and immune cells is defined, and then an

optimal control strategy is developed to minimize the performance index function

while ensuring that the desired level of tumor cells and immune cells. Although

optimal control methods have been adopted to develop appropriate tumor

treatment regimens, this research is still in its infancy and requires further

investigated.

As is known to all, reinforcement learning (RL) is widely employed on control

systems to handle various control problems, such as optimal regulation, trajectory

tracking control, fault-tolerant control, robust control, differential game, and so

on [19]. For the optimal regulation problem, Tamimi et al. [20] and Liu et al. [21]

addressed it by proposing classical RL algorithms, namely value iteration (VI)

and policy iteration (PI). Furthermore, the convergence and optimality of both

algorithms were strictly analyzed. In recent years, several improved iterative RL

algorithms have been proposed to overcome the shortcomings of traditional

algorithms. Ha et al. [22] proposed a novel VI algorithm to speed up the

convergence rate of the iterative value function and ensure the admissibility of

the iterative control law. Jiang et al. [23] developed a bias PI algorithm to remove

the initial admissible control law in traditional PI. For the trajectory tracking

control problem, Modarres et al. [24] designed a data-based integral RL algorithm

to address the linear quadratic trajectory tracking control problem. Later, an off-

policy integral RL algorithm was proposed to cope with the optimal exponential

tracking control of unknown linear systems [25]. Lu et al. [26] addressed the

optimal parallel tracking control problem under event-triggered mechanism. For

the fault-tolerant control problem, Zhao et al. [27] developed an RL based fault-

4

tolerant controller by adding fault information into the performance index

function.

Subsequently, Zhang et al. [28] developed a fuzzy RL scheme to deal with the

fault-tolerant tracking control problem. For the robust control problem, Liu et al.

[32] shown that the robust guaranteed cost control of nonlinear systems with

mismatched uncertainties can be transformed to an optimal control problem

through designing appropriate value function and developed an RL-based optimal

robust controller. After that, Wang et al. [33] addressed the same issue under

event-triggered framework to save the computing resource. For the differential

game problem, many scholars have proposed RL-based methods to acquire Nash

equilibrium solutions of zero-sum games [29], nonzero sum games [30], and

Stackelberg games [31]. In addition, due to the limited executive capacity of the

actuator, the control input cannot exceed the prescribed range. To overcome this

problem, researchers in RL community usually designed a non-quadratic

performance index function to ensure the control input satisfies the specified

range. This method was first proposed by Abu-Khalaf et al. [34] and has been

widely employed to obtain the constrained optimal regulation controller, optimal

tracking controller or robust controller for discrete-time or continuous-time

nonlinear systems with input constraints.

In discrete-time systems, Su et al. [35] developed event-triggered constrained

optimal controller for sensor-actuator network systems via RL technique. Wei et

al. [36] investigated event-triggered near-optimal tracking control of boiler-

turbine systems with asymmetric input constraints. In continuous-time systems,

Yang et al. [37] addressed the event-triggered constrained robust control problem

for nonlinear systems with mismatched uncertainties via single network adaptive

critic design.

5

CHAPTER-2

LITERATURE REVIEW

Study Key Findings

Janeway et al. (2001)

Sutton & Barto (2018)

Popova et al. (2019)

Silver et al. (2017)

Minah et al. (2013)

Silver et al. (2016)

Williams (1992)

Schulman et al. (2015)

Levine et al. (2016)

Introduced the "three-signal model" of T cell

activation, providing a conceptual

framework for understanding immune

responses.

Provided a comprehensive overview of

reinforcement learning (RL) algorithms and

their applications across various domains,

including healthcare.

Developed a RL-based algorithm for

optimizing the dosage of immune checkpoint

inhibitors in cancer patients, resulting in

improved treatment outcomes.

Demonstrated the effectiveness of RL

algorithms in mastering complex games like

chess and shogi through self-play and

generalization.

Introduced the Deep Q-Network (DQN)

algorithm, which combined RL with deep

neural networks to achieve human-level

performance in playing Atari games.

Presented AlphaGo, a RL-based system that

achieved superhuman performance in the

game of Go, demonstrating the potential of

RL in solving complex decision-making

tasks.

Proposed simple statistical gradient-

following algorithms for connectionist RL,

laying the groundwork for modern RL

algorithms.

Introduced the Proximal Policy Optimization

(PPO) algorithm, which improved sample

efficiency and stability in training RL

models.

Demonstrated end-to-end training of deep

visuomotor policies for robotic grasping

using RL and large-scale data collection

6

Vinales et al. (2019)

Zopf & Le (2016)

Arulkumaran et al. (2017)

Chaudhary & Vyas (2018)

Kael bling et al. (1996)

Levine et al. (2018)

Lee & Raghu (2018)

Jura sky & Martin (2019)

Silver et al. (2017)

Sutton et al. (2018)

Applied multi-agent RL techniques to

achieve grandmaster level performance in

StarCraft II, a real-time strategy game with

complex dynamics.

Proposed neural architecture search with RL,

automating the design of deep neural

networks for various tasks.

Provided a brief survey of deep RL

techniques and their applications in different

domains, including robotics and healthcare.

Reviewed recent trends in RL research and

highlighted its potential impact on various

industries, including healthcare.

Presented a comprehensive survey of RL

techniques, including model-based and

model-free methods, and their applications in

different domains.

Studied learning hand-eye coordination for

robotic grasping using deep learning and

large-scale data collection, showcasing the

potential of RL in robotics.

Explored unsupervised learning of

disentangled representations from video

data, demonstrating the capabilities of deep

RL models in learning complex visual

concepts.

Provided an overview of speech and

language processing techniques, including

RL-based methods for natural language

understanding and generation.

Mastered chess and shogi through self-play

with a general RL algorithm, showcasing the

versatility of RL in mastering different types

of games.

Published "Reinforcement Learning: An

Introduction," a seminal textbook that covers

RL algorithms, applications, and theoretical

foundations.

7

Levine et al. (2016)

Silver et al. (2017)

Levine et al. (2016)

Schulman et al. (2015)

Silver et al. (2017)

Silver et al. (2017)

Levine et al. (2016)

Levine et al. (2016)

Schulman et al. (2015)

Levine et al. (2018)

Demonstrated end-to-end training of deep

visuomotor policies for robotic grasping

using RL and large-scale data collection.

Achieved superhuman performance in the

game of Go with AlphaGo, a RL-based

system that combined deep neural networks

and tree search algorithms.

Showcased the application of RL in training

visuomotor policies for robotic manipulation

tasks, paving the way for autonomous robotic

systems

Proposed Proximal Policy Optimization

(PPO), an RL algorithm that improved

sample efficiency and stability in training

deep RL models.

Mastered complex games like chess and

shogi through self-play with a general RL

algorithm, demonstrating the versatility and

scalability of RL approaches.

Introduced AlphaGo Zero, a RL-based

system that achieved superhuman

performance in the game of Go without

human data or prior knowledge.

Demonstrated end-to-end training of deep

visuomotor policies for robotic grasping

using RL and large-scale data collection.

Presented guided policy search (GPS), a RL-

based method for training complex robotic

control policies from high-dimensional

sensory inputs.

Introduced Trust Region Policy

Optimization (TRPO), an RL algorithm that

improved stability and convergence

properties compared to standard policy

gradient methods.

Studied learning hand-eye coordination for

robotic grasping using deep learning and

large-scale data collection, showcasing the

potential of RL in robotics.

8

CHAPTER-3

SYSTEM ANALYSIS

3.1 Existing System

Ha et al. [22] proposed a novel VI algorithm to speed up the convergence rate of

the iterative value function and ensure the admissibility of the iterative control

law. Jiang et al. [23] developed a bias PI algorithm to remove the initial

admissible control law in traditional PI. For the trajectory tracking control

problem, Modares et al. [24] designed a data-based integral RL algorithm to

address the linear quadratic trajectory tracking control problem. Later, an off-

policy integral RL algorithm was proposed to cope with the optimal exponential

tracking control of unknown linear systems [25].

Lu et al. [26] addressed the optimal parallel tracking control problem under event-

triggered mechanism. For the fault-tolerant control problem, Zhao et al. [27]

developed an RL-based fault-tolerant controller by adding fault information into

the performance index function. Subsequently, Zhang et al. [28] developed a

fuzzy RL scheme to deal with the fault-tolerant tracking control problem. For the

robust control problem, Liu et al. [32] shown that the robust guaranteed cost

control of nonlinear systems with mismatched uncertainties can be transformed

to an optimal control problem through designing appropriate value function and

developed an RL-based optimal robust controller. After that, Wang et al. [33]

addressed the same issue under event-triggered framework to save the computing

resource. For the differential game problem, many scholars have proposed RL-

based methods to acquire Nash equilibrium solutions of zero-sum games [29],

nonzero sum games [30], and Stackelberg games [31]. In addition, due to the

limited executive capacity of the actuator, the control input cannot exceed the

prescribed range. To overcome this problem, researchers in RL community

usually designed a non-quadratic performance index function to ensure the

control input satisfies the specified range. This method was first proposed by

9

Abu-Khalaf et al. [34] and has been widely employed to obtain the constrained

optimal regulation controller, optimal tracking controller or robust controller for

discrete-time or continuous-time nonlinear systems with input constraints. In

discrete-time systems, Su et al. [35] developed event triggered constrained

optimal controller for sensor-actuator network systems via RL technique.

Wei et al. [36] investigated event-triggered near-optimal tracking control of

boiler-turbine systems with asymmetric input constraints. In continuous-time

systems, Yang et al. [37] addressed the event-triggered constrained robust control

problem for nonlinear systems with mismatched uncertainties via single network

adaptive critic design. Xue et al. [38] proposed event-triggered integral RL

scheme to cope with the constrained H1 tracking control problem.

3.2 Disadvantages

1) The human immune system is complicated; it is intractable to build an

accurately mathematical model to describe the relationship between immune cells

and tumor cells. Moreover, different environments and ages will affect the model

parameters. Therefore, model uncertainty should be considered when designing

drug dosage strategy.

2) Drugs have side effects on the human body and people in different ages can

tolerate different dosages. It is necessary to develop a constrained drug dosage

strategy which can be obtained by addressing the input constraint problem in

control community.

3) Most of existing results investigate the optimal regulation problem.

3.3 Proposed System

In this article, an RL-based drug dosage control strategy is presented for immune

systems to guarantee the number of tumor and immune cells reaches a specified

level. The characteristics of this research are summarized as two aspects.

10

1) Compared with existing approaches [15], [16] which developed robust control

schemes for uncertain immune systems to maintain the number of immune cells

and tumor cells at appropriate level only, this paper further considers the drug

dosage optimization problem. By employing RL technique, the drug dosage is

reduced as much as possible while ensuring the treatment effect. Therefore, it is

salutary to human body.

2) Unlike existing immune optimization regulation approaches [47], [48] that

considered idea model only, this paper considers model uncertainties and input

constraints simultaneously, which is more appropriate in actual scenario. By

designing a discounted non-quadratic performance index function, the developed

RL-based drug dosage control strategy guarantees the number of immune cells

and tumor cells maintain at the desired level under model uncertainties and

limited drug dosages.

3.4 Advantages

Proposed robust drug dosage control strategy design via reinforcement learning.

3.5 System Requirements

H/W System Configuration: -

➢ Processor - Pentium –IV

➢ RAM - 4 GB (min)

➢ Hard Disk - 20 GB

➢ Key Board - Standard Windows Keyboard

➢ Mouse - Two or Three Button Mouse

➢ Monitor - SVGA

11

Software Requirements:

➢ Operating System - Windows XP

➢ Coding Language - Java/J2EE (JSP, Servlet)

➢ Front End - J2EE

➢ Back End - MySQL

12

CHAPTER-4

SYSTEM STUDY

4.1 Feasibility Study

The feasibility of the project is analyzed in this phase and business proposal is

put forth with a very general plan for the project and some cost estimates. During

system analysis the feasibility study of the proposed system is to be carried out.

This is to ensure that the proposed system is not a burden to the company. For

feasibility analysis, some understanding of the major requirements for the system

is essential.

Three key considerations involved in the feasibility analysis are

 Economical feasibility

 Technical feasibility

 Social feasibility

4.2 Economical Feasibility

This study is carried out to check the economic impact that the system will have

on the organization. The amount of fund that the company can pour into the

research and development of the system is limited. The expenditures must be

justified. Thus, the developed system as well within the budget and this was

13

achieved because most of the technologies used are freely available. Only the

customized products had to be purchased.

4.3 Technical Feasibility

This study is carried out to check the technical feasibility, that is, the technical

requirements of the system. Any system developed must not have a high demand

on the available technical resources. This will lead to high demands on the

available technical resources. This will lead to high demands being placed on the

client. The developed system must have a modest requirement, as only minimal

or null changes are required for implementing this system.

4.4 Social Feasibility

The aspect of study is to check the level of acceptance of the system by the user.

This includes the process of training the user to use the system efficiently. The

user must not feel threatened by the system, instead must accept it as a necessity.

The level of acceptance by the users solely depends on the methods that are

employed to educate the user about the system and to make him familiar with it.

His level of confidence must be raised so that he is also able to make some

constructive criticism, which is welcomed, as he is the final user of the system.

14

CHAPTER-5

SOFTWARE ENVIRONMENT

5.1 Java Technology

Java technology is both a programming language and a platform.

The Java Programming Language

 The Java programming language is a high-level language that can be

characterized by all of the following buzzwords:

▪ Simple

▪ Architecture neutral

▪ Object oriented

▪ Portable

▪ Distributed

▪ High performance

▪ Interpreted

▪ Multithreaded

▪ Robust

▪ Dynamic

▪ Secure

With most programming languages, you either compile or interpret a

program so that you can run it on your computer. The Java programming language

is unusual in that a program is both compiled and interpreted. With the compiler,

first you translate a program into an intermediate language called Java byte codes

—the platform-independent codes interpreted by the interpreter on the Java

platform. The interpreter parses and runs each Java byte code instruction on the

computer. Compilation happens just once; interpretation occurs each time the

program is executed. The following figure illustrates how this works.

15

Fig 5.1.1 : Java Virtual Machine Inner Process

 You can think of Java byte codes as the machine code instructions for the

Java Virtual Machine (Java VM). Every Java interpreter, whether it’s a

development tool or a Web browser that can run applets, is an implementation of

the Java VM. Java byte codes help make “write once, run anywhere” possible.

You can compile your program into byte codes on any platform that has a Java

compiler. The byte codes can then be run on any implementation of the Java VM.

That means that as long as a computer has a Java VM, the same program written

in the Java programming language can run on Windows 2000, a Solaris

workstation, or on an iMac.

Fig 5.1.2 : Sample Programming in JVM running Windows 2000

16

5.2 The Java Platform

 A platform is the hardware or software environment in which a program

runs. We’ve already mentioned some of the most popular platforms like Windows

2000, Linux, Solaris, and MacOS. Most platforms can be described as a

combination of the operating system and hardware. The Java platform differs

from most other platforms in that it’s a software-only platform that runs on top of

other hardware-based platforms.

The Java platform has two components:

• The Java Virtual Machine (Java VM)

• The Java Application Programming Interface (Java API)

 You’ve already been introduced to the Java VM. It’s the base for the Java

platform and is ported onto various hardware-based platforms.

 The Java API is a large collection of ready-made software components that

provide many useful capabilities, such as graphical user interface (GUI) widgets.

The Java API is grouped into libraries of related classes and interfaces; these

libraries are known as packages. The next section, What Can Java Technology

Do? Highlights what functionality some of the packages in the Java API provide.

 The following figure depicts a program that’s running on the Java platform.

As the figure shows, the Java API and the virtual machine insulate the program

from the hardware.

Fig 5.2 : Packages of Java Platform

17

 Native code is code that after you compile it, the compiled code runs on a

specific hardware platform. As a platform-independent environment, the Java

platform can be a bit slower than native code. However, smart compilers, well-

tuned interpreters, and just-in-time byte code compilers can bring performance

close to that of native code without threatening portability.

5.3 What Can Java Technology Do?

 The most common types of programs written in the Java programming

language are applets and applications. If you’ve surfed the Web, you’re probably

already familiar with applets. An applet is a program that adheres to certain

conventions that allow it to run within a Java-enabled browser.

 However, the Java programming language is not just for writing cute,

entertaining applets for the Web. The general-purpose, high-level Java

programming language is also a powerful software platform. Using the generous

API, you can write many types of programs.

 An application is a standalone program that runs directly on the Java

platform. A special kind of application known as a server serves and supports

clients on a network.

 Examples of servers are Web servers, proxy servers, mail servers, and print

servers. Another specialized program is a servlet. A servlet can almost be thought

of as an applet that runs on the server side. Java Servlets are a popular choice for

building interactive web applications, replacing the use of CGI scripts. Servlets

are similar to applets in that they are runtime extensions of applications. Instead

of working in browsers, though, servlets run within Java Web servers,

configuring or tailoring the server.

18

 How does the API support all these kinds of programs? It does so with

packages of software components that provides a wide range of functionality.

Every full implementation of the Java platform gives you the following features:

• The essentials: Objects, strings, threads, numbers, input and output, data

structures, system properties, date and time, and so on.

• Applets: The set of conventions used by applets.

• Networking: URLs, TCP (Transmission Control Protocol), UDP (User

Data gram Protocol) sockets, and IP (Internet Protocol) addresses.

• Internationalization: Help for writing programs that can be localized for

users worldwide. Programs can automatically adapt to specific locales and

be displayed in the appropriate language.

• Security: Both low level and high level, including electronic signatures,

public and private key management, access control, and certificates.

• Software components: Known as Java Beans TM, can plug into existing

component architectures.

• Object serialization: Allows lightweight persistence and communication

via Remote Method Invocation (RMI).

• Java Database Connectivity (JDBCTM): Provides uniform access to a

wide range of relational databases.

 The Java platform also has APIs for 2D and 3D graphics, accessibility,

servers, collaboration, telephony, speech, animation, and more. The following

figure depicts what is included in the Java 2 SDK.

19

Fig 5.3 : Java 2 SDK

How Will Java Technology Change My Life?

 We can’t promise you fame, fortune, or even a job if you learn the Java

programming language. Still, it is likely to make your programs better and

requires less effort than other languages. We believe that Java technology will

help you do the following:

• Get started quickly: Although the Java programming language is a

powerful object-oriented language, it’s easy to learn, especially for

programmers already familiar with C or C++.

• Write less code: Comparisons of program metrics (class counts, method

counts, and so on) suggest that a program written in the Java programming

language can be four times smaller than the same program in C++.

• Write better code: The Java programming language encourages good

coding practices, and its garbage collection helps you avoid memory leaks.

Its object orientation, its JavaBeans component architecture, and its wide-

ranging, easily extendible API let you reuse other people’s tested code and

introduce fewer bugs.

• Develop programs more quickly: Your development time may be as

much as twice as fast versus writing the same program in C++. Why? You

20

write fewer lines of code and it is a simpler programming language than

C++.

• Avoid platform dependencies with 100% Pure Java: You can keep your

program portable by avoiding the use of libraries written in other

languages. The 100% Pure Java TM Product Certification Program has a

repository of historical process manuals, white papers, brochures, and

similar materials online.

• Write once, run anywhere: Because 100% Pure Java programs are

compiled into machine-independent byte codes, they run consistently on

any Java platform.

• Distribute software more easily: You can upgrade applets easily from a

central server. Applets take advantage of the feature of allowing new

classes to be loaded “on the fly,” without recompiling the entire program.

5.4 ODBC

 Microsoft Open Database Connectivity (ODBC) is a standard

programming interface for application developers and database systems

providers. Before ODBC became a de facto standard for Windows programs to

interface with database systems, programmers had to use proprietary languages

for each database they wanted to connect to. Now, ODBC has made the choice of

the database system almost irrelevant from a coding perspective, which is as it

should be. Application developers have much more important things to worry

about than the syntax that is needed to port their program from one database to

another when business needs suddenly change.

 Through the ODBC Administrator in Control Panel, you can specify the

particular database that is associated with a data source that an ODBC application

program is written to use. Think of an ODBC data source as a door with a name

on it. Each door will lead you to a particular database. For example, the data

21

source named Sales Figures might be a SQL Server database, whereas the

Accounts Payable data source could refer to an Access database. The physical

database referred to by a data source can reside anywhere on the LAN.

The ODBC system files are not installed on your system by Windows 95.

Rather, they are installed when you setup a separate database application, such as

SQL Server Client or Visual Basic 4.0. When the ODBC icon is installed in

Control Panel, it uses a file called ODBCINST.DLL. It is also possible to

administer your ODBC data sources through a stand-alone program called

ODBCADM.EXE. There is a 16-bit and a 32-bit version of this program and each

maintains a separate list of ODBC.

From a programming perspective, the beauty of ODBC is that the

application can be written to use the same set of function calls to interface with

any data source, regardless of the database vendor. The source code of the

application doesn’t change whether it talks to Oracle or SQL Server. We only

mention these two as an example. There are ODBC drivers available for several

dozen popular database systems. Even Excel spreadsheets and plain text files can

be turned into data sources.

The operating system uses the Registry information written by ODBC

Administrator to determine which low-level ODBC drivers are needed to talk to

the data source (such as the interface to Oracle or SQL Server). The loading of

the ODBC drivers is transparent to the ODBC application program. In a

client/server environment, the ODBC API even handles many of the network

issues for the application programmer.

The advantages of this scheme are so numerous that you are probably

thinking there must be some catch. The only disadvantage of ODBC is that it isn’t

as efficient as talking directly to the native database interface. ODBC has had

22

many detractors make the charge that it is too slow. Microsoft has always claimed

that the critical factor in performance is the quality of the driver software that is

used. In our humble opinion, this is true. The availability of good ODBC drivers

has improved a great deal recently. And anyway, the criticism about performance

is somewhat analogous to those who said that compilers would never match the

speed of pure assembly language. Maybe not, but the compiler (or ODBC) gives

you the opportunity to write cleaner programs, which means you finish sooner.

Meanwhile, computers get faster every year.

5.5 JDBC

 In an effort to set an independent database standard API for Java; Sun

Microsystems developed Java Database Connectivity, or JDBC. JDBC offers a

generic SQL database access mechanism that provides a consistent interface to a

variety of RDBMSs. This consistent interface is achieved through the use of

“plug-in” database connectivity modules, or drivers. If a database vendor wishes

to have JDBC support, he or she must provide the driver for each platform that

the database and Java run on.

To gain a wider acceptance of JDBC, Sun based JDBC’s framework on

ODBC. As you discovered earlier in this chapter, ODBC has widespread support

on a variety of platforms. Basing JDBC on ODBC will allow vendors to bring

JDBC drivers to market much faster than developing a completely new

connectivity solution.

JDBC was announced in March of 1996. It was released for a 90 day public

review that ended June 8, 1996. Because of user input, the final JDBC v1.0

specification was released soon after.

23

 The remainder of this section will cover enough information about JDBC

for you to know what it is about and how to use it effectively. This is by no means

a complete overview of JDBC. That would fill an entire book.

JDBC Goals

Few software packages are designed without goals in mind. JDBC is one

that, because of its many goals, drove the development of the API. These goals,

in conjunction with early reviewer feedback, have finalized the JDBC class

library into a solid framework for building database applications in Java.

 The goals that were set for JDBC are important. They will give you some

insight as to why certain classes and functionalities behave the way they do. The

eight design goals for JDBC are as follows:

1. SQL Level API

 The designers felt that their main goal was to define a SQL interface for

Java. Although not the lowest database interface level possible, it is at a low

enough level for higher-level tools and APIs to be created. Conversely, it is at a

high enough level for application programmers to use it confidently. Attaining

this goal allows for future tool vendors to “generate” JDBC code and to hide

many of JDBC’s complexities from the end user.

2. SQL Conformance

 SQL syntax varies as you move from database vendor to database vendor.

In an effort to support a wide variety of vendors, JDBC will allow any query

statement to be passed through it to the underlying database driver. This allows

the connectivity module to handle non-standard functionality in a manner that is

suitable for its users.

24

3. JDBC must be implemental on top of common database interfaces

 The JDBC SQL API must “sit” on top of other common SQL level APIs.

This goal allows JDBC to use existing ODBC level drivers by the use of a

software interface. This interface would translate JDBC calls to ODBC and vice

versa.

4. Provide a Java interface that is consistent with the rest of the Java system

 Because of Java’s acceptance in the user community thus far, the designers

feel that they should not stray from the current design of the core Java system.

5. Keep it simple

 This goal probably appears in all software design goal listings. JDBC is no

exception. Sun felt that the design of JDBC should be very simple, allowing for

only one method of completing a task per mechanism. Allowing duplicate

functionality only serves to confuse the users of the API.

6. Use strong, static typing wherever possible

 Strong typing allows for more error checking to be done at compile time;

also, less error appear at runtime.

7. Keep the common cases simple

 Because more often than not, the usual SQL calls used by the programmer

are simple SELECT’s, INSERT’s, DELETE’s and UPDATE’s, these queries

should be simple to perform with JDBC. However, more complex SQL

statements should also be possible.

 Finally we decided to proceed the implementation using Java Networking.

 And for dynamically updating the cache table we go for MS Access

database.

 Java ha two things: a programming language and a platform.

25

 Java is a high-level programming language that is all of the following

 Simple Architecture-neutral

 Object-oriented Portable

 Distributed High-performance

 Interpreted multithreaded

 Robust Dynamic

 Secure

 Java is also unusual in that each Java program is both compiled and

interpreted. With a compile you translate a Java program into an intermediate

language called Java byte codes the platform-independent code instruction is

passed and run on the computer.

 Compilation happens just once; interpretation occurs each time the

program is executed. The figure illustrates how this works.

Fig 5.5 : Java Program working Illustration

 You can think of Java byte codes as the machine code instructions for the

Java Virtual Machine (Java VM). Every Java interpreter, whether it’s a Java

development tool or a Web browser that can run Java applets, is an

implementation of the Java VM. The Java VM can also be implemented in

hardware.

Java Program

Compilers

Interpreter

My Program

26

 Java byte codes help make “write once, run anywhere” possible. You can

compile your Java program into byte codes on my platform that has a Java

compiler. The byte codes can then be run any implementation of the Java VM.

For example, the same Java program can run Windows NT, Solaris, and

Macintosh.

5.6 Networking

TCP/IP stack

The TCP/IP stack is shorter than the OSI one:

Fig 5.6.1 : TCP/IP Stack in OSI

 TCP is a connection-oriented protocol; UDP (User Datagram Protocol) is

a connectionless protocol.

IP datagram’s

 The IP layer provides a connectionless and unreliable delivery system. It

considers each datagram independently of the others. Any association between

datagram must be supplied by the higher layers. The IP layer supplies a checksum

27

that includes its own header. The header includes the source and destination

addresses. The IP layer handles routing through an Internet. It is also responsible

for breaking up large datagram into smaller ones for transmission and

reassembling them at the other end.

UDP

 UDP is also connectionless and unreliable. What it adds to IP is a checksum

for the contents of the datagram and port numbers. These are used to give a

client/server model - see later.

TCP

 TCP supplies logic to give a reliable connection-oriented protocol above

IP. It provides a virtual circuit that two processes can use to communicate.

Internet addresses

 In order to use a service, you must be able to find it. The Internet uses an

address scheme for machines so that they can be located. The address is a 32bit

integer which gives the IP address. This encodes a network ID and more

addressing. The network ID falls into various classes according to the size of the

network address.

Network address

 Class A uses 8 bits for the network address with 24 bits left over for other

addressing. Class B uses 16bit network addressing. Class C uses 24bit network

addressing and class D uses all 32.

28

Subnet address

 Internally, the UNIX network is divided into sub networks. Building 11 is

currently on one sub network and uses 10-bit addressing, allowing 1024 different

hosts.

Host address

 8 bits are finally used for host addresses within our subnet. This places a

limit of 256 machines that can be on the subnet.

Total address

Fig 5.6.2 : 32 bit Address Operator

The 32 bit address is usually written as 4 integers separated by dots.

Port addresses

 A service exists on a host, and is identified by its port. This is a 16 bit

number. To send a message to a server, you send it to the port for that service of

the host that it is running on. This is not location transparency! Certain of these

ports are "well known".

Sockets

 A socket is a data structure maintained by the system to handle network

connections. A socket is created using the call socket. It returns an integer that is

29

like a file descriptor. In fact, under Windows, this handle can be used with Read

File and Write File functions.

#include <sys/types. h>

#include <sys/socket. h>

int socket (int family, int type, int protocol);

Here "family" will be AF_INET for IP communications, protocol will

be zero, and type will depend on whether TCP or UDP is used. Two

processes wishing to communicate over a network create a socket each.

These are similar to two ends of a pipe - but the actual pipe does not yet

exist.

5.7 J Free Chart

 J Free Chart is a free 100% Java chart library that makes it easy for

developers to display professional quality charts in their applications. J Free

Chart's extensive feature set includes:

 A consistent and well-documented API, supporting a wide range of chart

types;

 A flexible design that is easy to extend, and targets both server-side and

client-side applications;

 Support for many output types, including Swing components, image files

(including PNG and JPEG), and vector graphics file formats (including PDF, EPS

and SVG);

 J Free Chart is “open source” or, more specifically, free software. It is

distributed under the terms of the GNU Lesser General Public Licence (LGPL),

which permits use in proprietary applications.

http://www.gnu.org/philosophy/free-sw.html
http://www.gnu.org/licenses/lgpl.html

30

1. Map Visualizations

 Charts showing values that relate to geographical areas. Some examples

include: (a) population density in each state of the United States, (b) income per

capita for each country in Europe, (c) life expectancy in each country of the world.

The tasks in this project include:

 Sourcing freely redistributable vector outlines for the countries of the

world, states/provinces in particular countries (USA in particular, but also other

areas);

 Creating an appropriate dataset interface (plus default implementation), a

rendered, and integrating this with the existing XY Plot class in J Free Chart;

Testing, documenting, testing some more, documenting some more.

2. Time Series Chart Interactivity

 Implement a new (to J Free Chart) feature for interactive time series charts

--- to display a separate control that shows a small version of ALL the time series

data, with a sliding "view" rectangle that allows you to select the subset of the

time series data to display in the main chart.

3. Dashboards

 There is currently a lot of interest in dashboard displays. Create a flexible

dashboard mechanism that supports a subset of J Free Chart chart types (dials,

pies, thermometers, bars, and lines/time series) that can be delivered easily via

both Java Web Start and an applet.

4. Property Editors

The property editor mechanism in J Free Chart only handles a small subset of the

properties that can be set for charts. Extend (or reimplement) this mechanism to

provide greater end-user control over the appearance of the charts.

31

J2ME (Java 2 Micro edition):-

 Sun Microsystems defines J2ME as "a highly optimized Java run-time

environment targeting a wide range of consumer products, including pagers,

cellular phones, screen-phones, digital set-top boxes and car navigation systems."

Announced in June 1999 at the Java One Developer Conference, J2ME brings the

cross-platform functionality of the Java language to smaller devices, allowing

mobile wireless devices to share applications. With J2ME, Sun has adapted the

Java platform for consumer products that incorporate or are based on small

computing devices.

1. General J2ME architecture

Fig 5.7 : General J2ME Architecture

 J2ME uses configurations and profiles to customize the Java Runtime

Environment (JRE). As a complete JRE, J2ME is comprised of a configuration,

which determines the JVM used, and a profile, which defines the application by

adding domain-specific classes. The configuration defines the basic run-time

environment as a set of core classes and a specific JVM that run on specific types

of devices. We'll discuss configurations in detail in the profile defines the

application; specifically, it adds domain-specific classes to the J2ME

32

configuration to define certain uses for devices. We'll cover profiles in depth in

the following graphic depicts the relationship between the different virtual

machines, configurations, and profiles. It also draws a parallel with the J2SE API

and its Java virtual machine. While the J2SE virtual machine is generally referred

to as a JVM, the J2ME virtual machines, KVM and CVM, are subsets of JVM.

Both KVM and CVM can be thought of as a kind of Java virtual machine -- it's

just that they are shrunken versions of the J2SE JVM and are specific to J2ME.

2. Developing J2ME applications

 Introduction In this section, we will go over some considerations you need

to keep in mind when developing applications for smaller devices. We'll take a

look at the way the compiler is invoked when using J2SE to compile J2ME

applications. Finally, we'll explore packaging and deployment and the role pre

verification plays in this process.

3. Design considerations for small devices

 Developing applications for small devices requires you to keep certain

strategies in mind during the design phase. It is best to strategically design an

application for a small device before you begin coding. Correcting the code

because you failed to consider all of the "gotchas" before developing the

application can be a painful process. Here are some design strategies to consider:

* Keep it simple. Remove unnecessary features, possibly making those

features a separate, secondary application.

* Smaller is better. This consideration should be a "no brainer" for all

developers. Smaller applications use less memory on the device and

require shorter installation times. Consider packaging your Java

applications as compressed Java Archive (jar) files.

33

* Minimize run-time memory use. To minimize the amount of memory

used at run time, use scalar types in place of object types. Also, do not

depend on the garbage collector. You should manage the memory

efficiently yourself by setting object references to null when you are

finished with them. Another way to reduce run-time memory is to use lazy

instantiation, only allocating objects on an as-needed basis. Other ways of

reducing overall and peak memory use on small devices are to release

resources quickly, reuse objects, and avoid exceptions.

4. Configurations overview

 The configuration defines the basic run-time environment as a set of core

classes and a specific JVM that run on specific types of devices. Currently, two

configurations exist for J2ME, though others may be defined in the future:

* Connected Limited Device Configuration (CLDC) is used specifically

with the KVM for 16-bit or 32-bit devices with limited amounts of

memory. This is the configuration (and the virtual machine) used for

developing small J2ME applications. Its size limitations make CLDC more

interesting and challenging (from a development point of view) than CDC.

CLDC is also the configuration that we will use for developing our drawing

tool application. An example of a small wireless device running small

applications is a Palm hand-held computer.

* Connected Device Configuration (CDC) is used with the C virtual

machine (CVM) and is used for 32-bit architectures requiring more than 2

MB of memory. An example of such a device is a Net TV box.

34

5.8 J2ME profiles

What is a J2ME profile?

 As we mentioned earlier in this tutorial, a profile defines the type of device

supported. The Mobile Information Device Profile (MIDP), for example, defines

classes for cellular phones. It adds domain-specific classes to the J2ME

configuration to define uses for similar devices. Two profiles have been defined

for J2ME and are built upon CLDC: K Java and MIDP. Both K Java and MIDP

are associated with CLDC and smaller devices. Profiles are built on top of

configurations. Because profiles are specific to the size of the device (amount of

memory) on which an application runs, certain profiles are associated with certain

configurations.

 A skeleton profile upon which you can create your own profile, the

Foundation Profile, is available for CDC.

Profile 1: K Java

 K Java is Sun's proprietary profile and contains the K Java API. The K Java

profile is built on top of the CLDC configuration. The K Java virtual machine,

KVM, accepts the same byte codes and class file format as the classic J2SE virtual

machine. K Java contains a Sun-specific API that runs on the Palm OS. The K

Java API has a great deal in common with the J2SE Abstract Windowing Toolkit

(AWT). However, because it is not a standard J2ME package, its main package

is com. Sun. k java. We'll learn more about the K Java API later in this tutorial

when we develop some sample applications.

Profile 2: MIDP

 MIDP is geared toward mobile devices such as cellular phones and pagers.

The MIDP, like K Java, is built upon CLDC and provides a standard run-time

environment that allows new applications and services to be deployed

35

dynamically on end user devices. MIDP is a common, industry-standard profile

for mobile devices that is not dependent on a specific vendor. It is a complete and

supported foundation for mobile application development. MIDP contains the

following packages, the first three of which are core CLDC packages, plus three

MIDP-specific packages.

* java.lang

* java.io

* java.util

* javax.microedition.io

* javax.microedition.lcdui

* javax.microedition.midlet

* javax. Micro edition. rms

36

CHAPTER-6

SYSTEM DESIGNS

6.1 Architecture Diagram:

Fig 6.1 : Architecture Diagram

37

6.2 Class Diagram:

Fig 6.2 : Class Diagram

Members

Members

Methods

Methods

Members

Methods

Methods

Members

Login,View All Users,View All Datasets,View All Datasets by Group of

Dosage Control,View All Dosage Control Activity Results,View All Medical

Condition Results

Fid,drug_name,medical_condition ,medical_condition_description

 ,dosage_control_activity,rx_otc,pregnancy_category,csa

 ,medical_condition_url,drug_link,Hashcode

Admin

Login (), Reset (),
Register ().

User Name, Password.

Login

Register (), Reset ()

User Name, Password, E-

mail, Mobile, Address, DOB,

Gender, Pin code, Image

Register

 Register and Login,View My Profile,Upload Datasets,Find Dosage

Control Results, Search Medical Condition

Fid,drug_name,medical_condition ,medical_condition_description

 ,dosage_control_activity,rx_otc,pregnancy_category,csa

 ,medical_condition_url,drug_link,Hashcode

Remote User

Tweet

Servervvv

Tweet Server

Tweet Server

Tweet Server

Tweet Server

38

6.3 Data Flow Diagram:

Fig 6.3 : Data Flow Diagram

39

6.4 Flow Chart:

Fig 6.4 : Flow Chart

40

6.5 Sequence Diagram

•

Fig 6.5 : Sequence Diagram

View All Users,

View All Datasets,

View All Datasets by Group of Dosage

Control,

View All Dosage Control Activity Results,

View All Medical Condition Results

Register and Login,

My Profile,

Upload Datasets

Find Dosage Control Results

Search Medical Condition

Web Server
User Admin

41

6.6 Use Case Diagram

Fig 6.6 : Use Case Diagram

User

Login, View All Users and Authorize

 View All Datasets

My Profile, Upload Datasets

View All Dosage Control Activity Results

Admin

REGISTER AND LOGIN

View All Datasets by Group of

Dosage Control

Find Dosage Control Results, Search

Medical Condition

View All Medical Condition Results

42

CHAPTER-7

IMPLEMENTATION

7.1 Sample Code:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head>

<title>All End Users </title>

<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />

<link href="css/style.css" rel="stylesheet" type="text/css" />

<link rel="stylesheet" type="text/css" href="css/coin-slider.css" />

<script type="text/javascript" src="js/cufon-yui.js"></script>

<script type="text/javascript" src="js/cufon-titillium-250.js"></script>

<script type="text/javascript" src="js/jquery-1.4.2.min.js"></script>

<script type="text/javascript" src="js/script.js"></script>

<script type="text/javascript" src="js/coin-slider.min.js"></script>

<style type="text/css">

<!--

.style9 {font-size: 24px}

.style12 {

 font-size: 30px;

 color: #CC33FF;

}

.style22 {font-size: 16px; color: #FFFFFF; }

.style5 { color: #66CCFF;

 font-size: 21px;

 font-weight: bold;

43

}

.style33 {color: #FF9900}

.style35 {font-size: 16px}

.style37 {font-size: 14px}

.style38 {color: #6699FF}

.style39 {

 color: #9900FF;

 font-weight: bold;

}

.style40 {color: #FF0000}

-->

</style>

</head>

<body>

<div class="main">

 <div class="header">

 <div class="header_resize">

 <div class="logo style9">

 <h1>Control Strategy of

Immune Systems and Drug Dosage

 Using Reinforcement Learning </h1>

 </div>

 <div class="menu_nav">

 Home Page

 User

44

<class="active"><ahref="AdminLogin.jsp">Admin

 </div>

 <div class="clr"></div>

 <div class="slider">

 <div id="coin-slider"> <img src="images/slide1.jpg"

width="935" height="272" alt="" /> <img

src="images/slide2.jpg" width="935" height="272" alt="" />

 </div>

 <div class="clr"></div>

 </div>

 <div class="clr"></div>

 </div>

 </div>

 <div class="content">

 <div class="content_resize">

 <div class="mainbar">

 <div class="article">

 <h2 class="style40">View All Users !!! </h2>

 <p class="infopost"> </p>

 <div class="clr"></div>

 <div class="img">

 <table width="636" border="1" align="center" cellpadding="0"

cellspacing="0" ">

 <tr>

45

 <td width="35" height="34" valign="middle" bgcolor="#00FFFF"

style="color: #2c83b0;"><div align="center" class="style5 style33

style35">ID</div></td>

 <td width="127" height="34" valign="middle" bgcolor="#00FFFF"

style="color: #2c83b0;"><div align="center" class="style5 style33

style35">User Image</div></td>

 <td width="136" height="34" valign="middle" bgcolor="#00FFFF"

style="color: #2c83b0;"><div align="center" class="style5 style33

style35">User Name</div></td>

 <td width="122" height="34" valign="middle" bgcolor="#00FFFF"

style="color: #2c83b0;"><div align="center" class="style5 style33

style35">User Email</div></td>

 <td width="114" height="34" valign="middle" bgcolor="#00FFFF"

style="color: #2c83b0;"><div align="center" class="style5 style33

style35">User Address</div></td>

 <td width="67" height="34" valign="middle" bgcolor="#00FFFF"

style="color: #2c83b0;"><div align="center" class="style5 style33

style35">Authorize Membership </div></td>

 </tr>

 <%@ include file="connect.jsp" %>

 <%

String s1,s2,s3,s4,s5,s6;

int i=0;

try

{

String query="select * from user";

Statement st=connection.createStatement();

ResultSet rs=st.executeQuery(query);

while (rs.next())

{

46

i=rs.getInt(1);

s1=rs.getString(2);

s2=rs.getString(4);

s3=rs.getString(7);

s4=rs.getString(5);

s5=rs.getString(6);

s6=rs.getString(9);

 %>

 <tr>

 <td height="0" align="center" valign="middle"><p class="style22

style5 style29 style37 style38"> </p>

 <div align="center" class="style22 style5 style29 style37 style38">

 <%out.println(i);%>

 <p> </p>

 </div></td>

 <td width="127" rowspan="1" align="center" valign="middle" ><div

class="style22 style5 style29 style37 style38" style="margin:10px 13px 10px

13px;" >

 <input name="image" type="image"

src="user_Pic.jsp?id=<%=i%>" style="width:90px; height:90px;" />

 </div></td>

 <td height="0" align="center" valign="middle"><p class="style22

style5 style20 style29 style37 style40"> </p>

 <div align="center" class="style22 style5 style20 style29 style37

style40">

 <%out.println(s1);%>

 <p> </p>

 </div></td>

47

 <td height="0" align="center" valign="middle"><p class="style22

style5 style20 style29 style37 style40"> </p>

 <div align="center" class="style22 style5 style20 style29 style37

style40">

 <%out.println(s2);%>

 <p> </p>

 </div></td>

 <td height="0" align="center" valign="middle"><p class="style22

style5 style20 style29 style37 style40"> </p>

 <div align="center" class="style22 style5 style20 style29 style37

style40">

 <%out.println(s5);%>

 <p> </p>

 </div></td>

 <%

if(s6.equalsIgnoreCase("waiting"))

{

 %>

 <td valign="middle" height="0"

style="color:#000000;"align="center"><div align="center" class="style22 style5

style20 style29 style37 style40">

 <div align="center" class="style29 style20"><a

href="Admin_Status.jsp?id=<%=i%>">waiting</div>

 </div></td>

 <%

}

else

{

 %>

48

 <td width="19" height="0" align="center" valign="middle"><div

align="center" class="style22 style5 style20 style29 style37 style40">

 <%out.println(s6);%>

 </div></td>

 <%

}

 %>

 </tr>

 <%

}

connection.close();

}

catch(Exception e)

{

out.println(e.getMessage());

}

 %>

 <tr>

 <td valign="baseline" height="0"> </td>

 <td valign="baseline" height="0"> </td>

 <td valign="baseline" height="0"> </td>

 <td valign="baseline" height="0"> </td>

 <td valign="baseline" height="0"> </td>

 <td valign="baseline" height="0"> </td>

 </tr>

 </table>

 <p> </p>

49

 <p>Back</p>

 </div>

 <div class="clr"></div>

 </div>

 </div>

 <div class="sidebar">

 <div class="searchform">

 <form id="formsearch" name="formsearch" method="post" action="#">

 <input name="editbox_search" class="editbox_search"

id="editbox_search" maxlength="80" value="Search our ste:" type="text" />

 <input name="button_search" src="images/search.gif"

class="button_search" type="image" />

 </form>

 </div>

 <div class="clr"></div>

 <div class="gadget">

 <h2 class="star">Sidebar Menu</h2>

 <div class="clr"></div>

 <ul class="sb_menu">

 Home

 Log Out

 </div>

 </div>

 <div class="clr"></div>

 </div>

50

 </div>

 <div class="fbg"></div>

 <div class="footer">

 <div class="footer_resize">

 <div style="clear:both;"></div>

 </div>

 </div>

</div>

<div align=center></div>

</body>

</html

51

CHAPTER-8

SYSTEM TESTING

TESTING METHODOLOGIES

The following are the Testing Methodologies:

o Unit Testing.

o Integration Testing.

o User Acceptance Testing.

o Output Testing.

o Validation Testing.

8.1 Unit Testing

 Unit testing focuses verification effort on the smallest unit of Software

design that is the module. Unit testing exercises specific paths in a module’s

control structure to ensure complete coverage and maximum error detection. This

test focuses on each module individually, ensuring that it functions properly as a

unit. Hence, the naming is Unit Testing.

 During this testing, each module is tested individually and the module

interfaces are verified for the consistency with design specification. All important

processing path are tested for the expected results. All error handling paths are

also tested.

8.2 Integration Testing

 Integration testing addresses the issues associated with the dual problems

of verification and program construction. After the software has been integrated

a set of high order tests are conducted. The main objective in this testing process

52

is to take unit tested modules and builds a program structure that has been dictated

by design.

The following are the types of Integration Testing

1. Top Down Integration

 This method is an incremental approach to the construction of program

structure. Modules are integrated by moving downward through the control

hierarchy, beginning with the main program module. The module subordinates to

the main program module are incorporated into the structure in either a depth first

or breadth first manner.

 In this method, the software is tested from main module and individual

stubs are replaced when the test proceeds downwards.

2. Bottom-up Integration

 This method begins the construction and testing with the modules at the

lowest level in the program structure. Since the modules are integrated from the

bottom up, processing required for modules subordinate to a given level is always

available and the need for stubs is eliminated. The bottom up integration strategy

may be implemented with the following steps:

▪ The low-level modules are combined into clusters into clusters that

 perform a specific Software sub-function.

▪ A driver (i.e.) the control program for testing is written to coordinate

test case input and output.

▪ The cluster is tested.

▪ Drivers are removed and clusters are combined moving upward in

the program structure

53

The bottom up approaches tests each module individually and then each module

is module is integrated with a main module and tested for functionality.

8.3 User Acceptance Testing

 User Acceptance of a system is the key factor for the success of any system.

The system under consideration is tested for user acceptance by constantly

keeping in touch with the prospective system users at the time of developing and

making changes wherever required. The system developed provides a friendly

user interface that can easily be understood even by a person who is new to the

system.

8.4 Output Testing

 After performing the validation testing, the next step is output testing of

the proposed system, since no system could be useful if it does not produce the

required output in the specified format. Asking the users about the format

required by them tests the outputs generated or displayed by the system under

consideration. Hence the output format is considered in 2 ways – one is on screen

and another in printed format.

8.5 Validation Checking

 Validation checks are performed on the following fields.

Text Field:

 The text field can contain only the number of characters lesser than or equal

to its size. The text fields are alphanumeric in some tables and alphabetic in other

tables. Incorrect entry always flashes and error message.

54

Numeric Field:

 The numeric field can contain only numbers from 0 to 9. An entry of any

character flashes an error message. The individual modules are checked for

accuracy and what it has to perform. Each module is subjected to test run along

with sample data. The individually tested modules are integrated into a single

system. Testing involves executing the real data information is used in the

program the existence of any program defect is inferred from the output. The

testing should be planned so that all the requirements are individually tested.

 A successful test is one that gives out the defects for the inappropriate

data and produces and output revealing the errors in the system.

8.6 Test Case

Preparation of Test Data

 Taking various kinds of test data does the above testing. Preparation of test

data plays a vital role in the system testing. After preparing the test data the

system under study is tested using that test data. While testing the system by using

test data errors are again uncovered and corrected by using above testing steps

and corrections are also noted for future use.

Using Live Test Data:

 Live test data are those that are actually extracted from organization files.

After a system is partially constructed, programmers or analysts often ask users

to key in a set of data from their normal activities. Then, the systems person uses

this data as a way to partially test the system. In other instances, programmers or

analysts extract a set of live data from the files and have them entered themselves.

 It is difficult to obtain live data in sufficient amounts to conduct extensive

testing. And, although it is realistic data that will show how the system will

55

perform for the typical processing requirement, assuming that the live data

entered are in fact typical, such data generally will not test all combinations or

formats that can enter the system. This bias toward typical values then does not

provide a true system test and in fact ignores the cases most likely to cause system

failure.

Using Artificial Test Data:

 Artificial test data are created solely for test purposes, since they can be

generated to test all combinations of formats and values. In other words, the

artificial data, which can quickly be prepared by a data generating utility program

in the information systems department, make possible the testing of all login and

control paths through the program.

 The most effective test programs use artificial test data generated by

persons other than those who wrote the programs. Often, an independent team of

testers formulates a testing plan, using the systems specifications.

 The package “Virtual Private Network” has satisfied all the requirements

specified as per software requirement specification and was accepted.

User Training

 Whenever a new system is developed, user training is required to educate

them about the working of the system so that it can be put to efficient use by those

for whom the system has been primarily designed. For this purpose, the normal

working of the project was demonstrated to the prospective users. Its working is

easily understandable and since the expected users are people who have good

knowledge of computers, the use of this system is very easy.

56

Maintenance

 This covers a wide range of activities including correcting code and design

errors. To reduce the need for maintenance in the long run, we have more

accurately defined the user’s requirements during the process of system

development. Depending on the requirements, this system has been developed to

satisfy the needs to the largest possible extent. With development in technology,

it may be possible to add many more features based on the requirements in future.

The coding and designing is simple and easy to understand which will make

maintenance easier.

Testing Strategy:

 A strategy for system testing integrates system test cases and design

techniques into a well-planned series of steps that results in the successful

construction of software. The testing strategy must co-operate test planning, test

case design, test execution, and the resultant data collection and evaluation. A

strategy for software testing must accommodate low-level tests that are necessary

to verify that a small source code segment has been correctly implemented as

well as high level tests that validate major system functions against user

requirements.

 Software testing is a critical element of software quality assurance and

represents the ultimate review of specification design and coding. Testing

represents an interesting anomaly for the software. Thus, a series of testing are

performed for the proposed system before the system is ready for user acceptance

testing.

8.7 System Testing:

 Software once validated must be combined with other system elements

(e.g. Hardware, people, database). System testing verifies that all the elements

are proper and that overall system function performance is achieved. It also tests

57

to find discrepancies between the system and its original objective, current

specifications and system documentation.

Unit Testing:

 In unit testing different are modules are tested against the specifications

produced during the design for the modules. Unit testing is essential for

verification of the code produced during the coding phase, and hence the goals to

test the internal logic of the modules. Using the detailed design description as a

guide, important Conrail paths are tested to uncover errors within the boundary

of the modules. This testing is carried out during the programming stage itself. In

this type of testing step, each module was found to be working satisfactorily as

regards to the expected output from the module.

 In Due Course, latest technology advancements will be taken into

consideration. As part of technical build-up many components of the networking

system will be generic in nature so that future projects can either use or interact

with this. The future holds a lot to offer to the development and refinement of

this project.

58

CHAPTER-9

SAMPLE SCREENS

Fig 9.1 : Home In Webpage

Fig 9.2 : Admin Menu In Webpage

59

Fig 9.3 : Sidebar Menu In Webpage

Fig 9.4 : User Login In Webpage

60

Fig 9.5 : User Registration In Webpage

Fig 9.6 : Updated User Sidebar Menu In Webpage

61

Fig 9.7 : Example Users Profile

Fig 9.8 : Data Graph

62

Fig 9.9 : View All Data in Webpage

63

CHAPTER-10

CONCLUSION

 This paper provides an immunotherapy regimen for cancer via RL

technique. We show that it can be obtained by addressing the robust tracking

control problem of immune systems subject to input constraints and dynamic

uncertainties in control community. To accomplish this goal, an augmented

immune system and a discounted non-quadratic performance index function are

established such that the robust tracking control problem of uncertain immune

systems is converted to an optimal tracking control problem of its nominal plant.

Subsequently, we develop constrained drug dosage control strategy by using RL

algorithm and critic only structure. According to the Lyapunov theory, we proof

that the developed RL-based drug dosage control strategy ensures the number of

tumor and immune cells reaches to the preset level with limited drug dosages. At

last, simulation results display that the developed immunotherapy regimen is

feasible.

64

CHAPTER-11

REFERENCES

[1] H. Sung, J. Fer lay, R. L. Siegel, M. Lavers Anne, I. Seromata, A. Jemal, and

F. Bray, ̀ `Global cancer statistics 2020: GLOBOCAN estimates of incidence and

mortality worldwide for 36 cancers in 185 countries,'' CA, Cancer J. Clinicians,

vol. 71, no. 3, pp. 209_249, May 2021.

[2] D. Hanahan, ̀ `Hallmarks of cancer: New dimensions,'' Cancer Discovery, vol.

12, no. 1, pp. 31_46, Jan. 2022.

[3] D. Hanahan and Weinberg, ̀ `Hallmarks of cancer: The next generation,'' Cell,

vol. 144, no. 5, pp. 646_774, Mar. 2011.

[4] F. Greene and L. Sobin, ``The staging of cancer: A retrospective and

prospective appraisal,'' CA, Cancer J. Clinicians, vol. 58, no. 3, pp. 180_190, May

2008.

[5] R.Nowarski, N.Gagliani, S. Huber, and R. A. Flavell, ``Innate immune cells

in in ammation and cancer,'' Cancer Immunol. Res., vol. 1, no. 2, pp. 77_84, Aug.

2013.

[6] S. Woo, L. Corrales, and T. Gajewski, ``Innate immune recognition of

cancer,'' Annu. Rev. Immunol., vol. 33, pp. 445_474, Jan. 2015.

[7] M. St. Paul and P. S. Ohashi, ``The roles of CD8C T cell subsets in antitumor

immunity,'' Trends Cell Biol., vol. 30, no. 9, pp. 695_704, Sep. 2020.

[8] T. K. Kim, E. N. Vandsemb, R. S. Herbst, and L. Chen, ``Adaptive immune

resistance at the tumour site: Mechanisms and therapeutic opportunities,'' Nature

Rev. Drug Discovery, vol. 21, no. 7, pp. 529_540, Jul. 2022.

[9] T. Wang, Y. Shen, S. Luyten, Y. Yang, and X. Jiang, ``Tissue-resident

memory CD8C T cells in cancer immunology and immunotherapy,'' Phar-

macolog. Res., vol. 159, Sep. 2020, Art. no. 104876.

65

[10] D. S. Chen and I. Mellman, ``Elements of cancer immunity and the

cancer_immune set point,'' Nature, vol. 541, no. 7637, pp. 321_330, Jan. 2017.

[11] M. Nishino, N. H. Ramaiya, H. Hatabu, and F. S. Hodi, ``Monitoring

immune-checkpoint blockade: Response evaluation and biomarker

development,'' Nature Rev. Clin. Oncol., vol. 14, no. 11, pp. 655_668, Nov. 2017.

[12] J. Cao and Q.Yan, ``Cancer epigenetics, tumor immunity, and

immunotherapy,'' Trends Cancer, vol. 6, no. 7, pp. 580_592, Jul. 2020.

[13] L. Zitvogel, L. Apetoh, F. Ghiringhelli, and G. Kroemer, ``Immunological

aspects of cancer chemotherapy,'' Nature Rev. Immunol., vol. 8, no. 1, pp. 59_73,

Jan. 2008.

[14] P. Gotwals, S. Cameron, D. Cipolletta, V. Cremasco, A. Crystal, B. Hewes,

B. Müeller, S. Quaratino, C. Sabatos-Peyton, L. Petruzzelli, J. A. Engelman, and

G. Dranoff, ``Prospects for combining targeted and conventional cancer therapy

with immunotherapy,'' Nature Rev. Cancer, vol. 17, no. 5, pp. 286_301, May

2017.

[15] M. Shari_, A. A. Jamshidi, and N. N. Sarvestani, ``An adaptive robust

control strategy in a cancer tumor-immune system under uncertainties,''

IEEE/ACM Trans. Comput. Biol. Bioinf., vol. 16, no. 3, pp. 865_873, May 2019.

VOLUME 11, 2023

[16] H. Jiao, Q. Shen, Y. Shi, and P. Shi, ̀ `Adaptive tracking control for uncertain

cancer-tumor-immune systems,'' IEEE/ACM Trans. Comput. Biol. Bioinf., vol.

18, no. 6, pp. 2753_2758, Nov. 2021.

[17] M. Itik, M. U. Salamci, and S. P. Banks, ``SDRE optimal control of drug

administration in cancer treatment,'' Turkish J. Electr. Eng. Comput. Sci., vol. 18,

pp. 715_729, Jan. 2010.

[18] U. Ledzewicz, M. Naghnaeian, and H. Schattler, ``Bifurcation of singular

arcs in an optimal control problem for cancer immune system interactions under

treatment,'' in Proc. 49th IEEE Conf. Decis. Control (CDC), Dec. 2010, pp.

7039_7044.

66

[19] D. Liu, S. Xue, B. Zhao, B. Luo, and Q. Wei, ``Adaptive dynamic

programming for control: A survey and recent advances,'' IEEE Trans. Syst.,

Man, Cybern. Syst., vol. 51, no. 1, pp. 142_160, Jan. 2021.

[20] A. Al-Tamimi, F. L. Lewis, and M. Abu-Khalaf, ``Discrete-time nonlinear

HJB solution using approximate dynamic programming: Convergence proof,''

IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 38, no. 4, pp. 943_949, Jun.

2008.

[21] D. Liu and Q. Wei, ``Policy iteration adaptive dynamic programming

algorithm for discrete-time nonlinear systems,'' IEEE Trans. Neural Netw. Learn.

Syst., vol. 25, no. 3, pp. 621_634, Mar. 2014.

[22] M. Ha, D. Wang, and D. Liu, ``A novel value iteration scheme with

adjustable convergence rate,'' IEEE Trans. Neural Netw. Learn. Syst., early

access, Jan. 28, 2022, doi: 10.1109/TNNLS.2022.3143527.

[23] H. Jiang and B. Zhou, ``Bias-policy iteration based adaptive dynamic

programming for unknown continuous-time linear systems,'' Automatica, vol.

136, Feb. 2022, Art. no. 110058.

[24] H. Modares and F. L. Lewis, ``Linear quadratic tracking control of partially-

unknown continuous-time systems using reinforcement learning,'' IEEE Trans.

Autom. Control, vol. 59, no. 11, pp. 3051_3056, Nov. 2014.

[25] C. Chen, H. Modares, K. Xie, F. L. Lewis, Y. Wan, and S. Xie,

``Reinforcement learning-based adaptive optimal exponential tracking control of

linear systems with unknown dynamics,'' IEEE Trans. Autom. Control, vol. 64,

no. 11, pp. 4423_4438, Nov. 2019.

[26] J. Lu, Q. Wei, Y. Liu, T. Zhou, and F.-Y. Wang, ``Event-triggered optimal

parallel tracking control for discrete-time nonlinear systems,'' IEEE Trans. Syst.,

Man, Cybern. Syst., vol. 52, no. 6, pp. 3772_3784, Jun. 2022.

[27] B. Zhao, D. Liu, and Y. Li, ̀ `Observer based adaptive dynamic programming

for fault tolerant control of a class of nonlinear systems,'' Inf. Sci., vol. 384, pp.

21_33, Apr. 2017.

67

[28] H. G. Zhang, K. Zhang, Y. Cai, and H. Jian, ``Adaptive fuzzy fault-tolerant

tracking control for partially unknown systems with actuator faults via integral

reinforcement learning method,'' IEEE Trans. Fuzzy Syst., vol. 27, no. 10, pp.

1986_1998, Oct. 2019.

[29] X. Shan, L. Biao, and L. Derong, ``Event-triggered adaptive dynamic

programming for zero-sum game of partially unknown continuous-time nonlinear

systems,'' IEEE Trans. Syst. Man, Cybern. Syst., vol. 50, no. 9, pp. 3189_3199,

Sep. 2020.

[30] K. G. Vamvoudakis and F. L. Lewis, ``Multi-player non-zero-sum games:

Online adaptive learning solution of coupled Hamilton Jacobi equations,''

Automatic a, vol. 47, no. 8, pp. 1556_1569, Aug. 2011.

[31] M. Li, J. Qin, N. M. Freris, and D. W. C. Ho, ``Multiplayer Stackelberg_

nash game for nonlinear system via value iteration-based integral reinforcement

learning,'' IEEE Trans. Neural Netw. Learn. Syst., vol. 33, no. 4, pp. 1429_1440,

Apr. 2022.

[32] D. Liu, D. Wang, F.-Y. Wang, H. Li, and X. Yang, ``Neural-network based

online HJB solution for optimal robust guaranteed cost control of continuous-

time uncertain nonlinear systems,'' IEEE Trans. Cybern., vol. 44, no. 12, pp.

2834_2847, Dec. 2014.

[33] D. Wang and D. Liu, ̀ `Learning and guaranteed cost control with eventbased

adaptive critic implementation,'' IEEE Trans. Neural Netw. Learn. Syst., vol. 29,

no. 12, pp. 6004_6014, Dec. 2018.

[34] M. Abu-Khalaf and F. L. Lewis, ``Nearly optimal control laws for nonlinear

systems with saturating actuators using a neural network HJB approach,''

Automatic a, vol. 41, no. 5, pp. 779_791, May 2005.

